NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE
(NAAC Accredited)

(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE MATERIALS

MAT 201 PARTIAL DIFFERENTIAL EQUATIONS AND COMPLEX ANALYSIS

VISION OF THE INSTITUTION

To mould true citizens who are millennium leaders and catalysts of change through excellence in education.

MISSION OF THE INSTITUTION

NCERC is committed to transform itself into a center of excellence in Learning and Research in Engineering and Frontier Technology and to impart quality education to mould technically competent citizens with moral integrity, social commitment and ethical values.

We intend to facilitate our students to assimilate the latest technological know-how and to imbibe discipline, culture and spiritually, and to mould them in to technological giants, dedicated research scientists and intellectual leaders of the country who can spread the beams of light and happiness among the poor and the underprivileged.

ABOUT DEPARTMENT

- Established in: 2002
- Course offered : B.Tech in Mechanical Engineering

M.Tech in Machine Design

- Approved by AICTE New Delhi and Accredited by NAAC

Affiliated to the University of Dr. A P J Abdul Kalam Technological University.

DEPARTMENT VISION

Producing internationally competitive Mechanical Engineers with social responsibilities and sustainable employability through viable strategies as well as competent exposure oriented quality education.

DEPARTMENT MISSION

M1	Imparting high impact education by providing conductive teaching learning environment.
M2	Fostering effective modes of continuous learning process with moral and ethical values.
M3	Enhancing leadership qualties with social commitment, professional alttitude, unity, team spirit and communication skill.
M4	Introducing present scenario in research and development through collaborative efforts blended with industry and institution.

PROGRAMME EDUCATIONAL OBJECTIVES

PEONo.	Program Educational Ojectives Staments
PE01	
PE02	
PE03	
PE04	

PROGRAM OUTCOMES (POS)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
2. Problem analysis: Identify, formulate, review research literature, and a nalyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
9. Individual and team work: Function effectively as an individual, and as a
member or leader in diverse teams, and in multidisciplinary settings.
10. Communication: Communicate effectively on comple x engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSO)

PSO1	Graduates able to apply principles of engineoring, basic sciencoss and analytics including multi-variant calcalus and higher order partial differential equations.
PSO2	Graduates able to pertorm modelling, analysing, designing and simulating physical systems, components and procosses.
PSO3	Graduates able to work protessionally on mectianical systems, thermal systems and production systems.

COURSE OUTCOMES

CO 1	Understand the concept and the solution of partial differential equation.
CO 2	Analyse and solve one dimensional wave equation and heat equation.
CO 3	Understand complex functions, its continuity differentiability with the use of Cauchy-
	Riemann equations.
CO 4	Evaluate complex integrals using Cauchy's integral theorem and Cauchy's
	integral formula, understand the series expansion of analytic function
CO 5	Understand the series expansion of complex function about a singularity and
	Apply residue theorem to compute several kinds of real integrals.

CO VS PO'S AND PSO'S MAPPING

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	3	3	3	3	2	1	-	-	-	2	-	2
CO 2	3	3	3	3	2	1	-	-	-	2	-	2
CO 3	3	3	3	3	2	1	-	-	-	2	-	2
CO 4	3	3	3	3	2	1	-	-	-	2	-	2
$\operatorname{CO~5}$	3	3	3	3	2	1	-	-	-	2	-	2

CO	PSO1	PSO2	PSO3
$\mathrm{CO1}$	2	1	
$\mathrm{CO2}$	2	1	
$\mathrm{CO3}$	1	1	
$\mathrm{CO4}$	1	1	
$\mathrm{CO5}$	1	1	

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1

SYLLABUS
 Module 1 (Partial Differential Equations) (8 hours)

(Text 1-Relevant portions of sections 17.1, 17.2, 17.3, 17.4, 17.5, 17.7, 18.1, 18.2) Partial differential equations, Formation of partial differential equations -elimination of arbitrary constants-elimination of arbitrary functions, Solutions of a partial differential equations, Equations solvable by direct integration, Linear equations of the first orderLagrange's linear equation, Non-linear equations of the first order -Charpit's method, Solution of equation by method of separation of variables.

Module 2 (Applications of Partial Differential Equations) (10 hours) (Text 1-Relevant portions of sections $18.3,18.4,18.5$)

One dimensional wave equation- vibrations of a stretched string, derivation, solution of the wave equation using method of separation of variables, D'Alembert's solution of the wave equation, One dimensional heat equation, derivation, solution of the heat equation

Module 3 (Complex Variable - Differentiation) (9 hours)
(Text 2: Relevant portions of sections13.3, 13.4, 17.1, 17.2, 17.4)

Complex function, limit, continuity, derivative, analytic functions, Cauchy-Riemann equations, harmonic functions, finding harmonic conjugate, Conformal mappings- mappings $W=Z^{2}, W=e^{Z}$.Linear fractional transformation $W=1 / Z$ fixed points, Transformation $W=S$ in Z

Module 4 (Complex Variable - Integration) (9 hours)

(Text 2- Relevant topics from sections14.1, 14.2, 14.3, 14.4,15.4)

Complex integration, Line integrals in the complex plane, Basic properties, First evaluation method-indefinite integration and substitution of limit, second evaluation method-use of a representation of a path, Contour integrals, Cauchy integral theorem (without proof) on simply connected domain, Cauchy integral theorem (without proof) on multiply connected domain Cauchy Integral formula (without proof), Cauchy Integral formula for derivatives of an analytic function, Taylor's series and Maclaurin series.

Module 5 (Complex Variable - Residue Integration) (9 hours)

(Text 2-Relevant topics from sections16.1, 16.2, 16.3, 16.4)
Laurent's series(without proof), zeros of analytic functions, singularities, poles, removable singularities, essential singularities, Residues, Cauchy Residue theorem (without proof), Evaluation of definite integral using residue theorem, Residue integration of real integrals integrals of rational functions of $\operatorname{Cos} \theta$ and $\operatorname{Sin} \theta$, integrals of improper integrals of the form $\int_{-\infty}^{\infty} f(x) d x$ with no poles on the real axis. ($\int_{A}^{B} f(x) d x$ whose integrand become infinite at a point in the interval of integration is excluded from the syllabus),

Textbooks:

1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44th Edition, 2018.
2. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, John Wiley \& Sons, 2016.

References:

1. Peter V. O'Neil, Advanced Engineering Mathematics, Cengage, 7th Edition, 2012

QUESTION BANK

MODULE 1

Q.NO	QUESTIONS	CO	KL	PAGE NO
1	Derive a partial differential equation from the relation $z=f(x+$ $a t)+g(x-a t)$	CO1	K1	12
2.	Derive a partial differential equation from the relation $\quad z=$ y $f(x)+x g(y)$	CO1	K3	12
3	Find the differential equation of all planes which are at a constant distance a from the origin	CO1	K1	13
4	Solve $\frac{\partial^{3} z}{\partial x^{2} \partial y}+18 x y^{2}+\sin (2 x-y)=0$	CO1	K3	14
5	Use Charpit's methods to solve $q+x p=p^{2}$	CO1	K3	16
6	Use Charpit's methods to solve $\left(p^{2}+q^{2}\right) y=q z$	CO1	K3	18
7	Solve $x(y-z) p+y(z-x) q=z(x-y)$	CO1	K2	19
8	Solve $(y-z) p+(x-y) q=z-x$	CO1	K2	20
9	Solve by the method of separation of variables $\frac{\partial^{2} z}{\partial x^{2}}-2 \frac{\partial z}{\partial x}+$ $\frac{\partial z}{\partial y}=0$	CO1	K2	22
10	Using the method of separation of variables, solve $\mathrm{x} \frac{\partial \mathrm{u}}{\partial \mathrm{x}}-$ $2 \mathrm{y} \frac{\partial u}{\partial \mathrm{y}}=\mathbf{0}$	CO1	K3	24
11	Using the method of separation of variables, solve $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+$ $u \quad$ where $u(x, 0)=6 e^{-3 x}$	CO1	K3	25
12	Solve $x y d x+y^{2} d y=z x y-2 x^{2}$	CO1	K3	28

MODULE 2

Q.NO	QUESTIONS	$\begin{aligned} & \text { C } \\ & \text { O } \end{aligned}$	KL	PAGE NO
1	Derive One dimensional wave equation	$\begin{aligned} & \text { C } \\ & 0 \\ & 0 \\ & 2 \end{aligned}$	K2	30
2.	Derive the solution of one dimensional wave equation	CO2	K2	31
3	A tightly stretched string of length l with fixed ends is initially in equilibrium position. It is set vibrating by giving each point a velocity $v_{0} \sin ^{3} \frac{\pi x}{l}$ Find the displacement of the string at any time.	CO2	K3	32
4	A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially in a position given by $y=y_{0} \sin ^{3} \frac{\pi x}{l}$. If it is released from rest from this position find the displacement $y(x, t)$	CO2	K3	34
5	A transversely vibrating string of length ' a ' is stretched between two points A and B. The initial displacement of each point of the string is zero and the initial velocity at a distance x from A is $k x(a-$ x). Find the form of string at any subsequent time.	CO2	K3	35
6	Derive Solution of one dimensional wave equation using D Alembert's method	CO2	K1	39
7	Derive One dimensional heat equation	CO2	K1	40
8	Derive Solution of one dimensional heat equation using variable Separable method	CO2	K2	41
9	Find the temperature $U(x, t)$ of a homogeneous bar of heat conducting length l whose end points are kept at zero temperature and whose initi is given by $\frac{a x(l-x)}{l^{2}}$	CO2	K2	43
10	A homogeneous rod of conducting material of length 100 cm has its ends kept at zero temperature and the temperature initially is $u(x, 0)=f(x)=\left\{\begin{array}{lc} x \quad, \quad 0<x<50 \\ 100-x, & 50<x<100 \end{array}\right.$ Find the temperature (x, t) at any time	CO2	K3	44
11	A homogeneous rod of conducting material of length 10 cm has its ends kept at zero temperature and the temperature initially is $u(x, 0)=f(x)=\left\{\begin{array}{lr} x & \quad 0<x<5 \\ 10-x, 50<x<10 \end{array}\right.$	CO2	K3	45

	Find the temperature (x, t) at any time.			
12	A tightly stretched homogenous string of length 20cm with its fixed ends executes transverse vibrations. Motion starts with zero initial velocity by displacing the string into the form $f(x)=K\left(x^{2}-x^{3}\right)$. Find the deflection $u(x, t)$ at any time t	CO2	K3	48

MODULE 3

Q.NO	QUESTIONS	CO	KL	PAGE NO
1	Check whether the function $f(z)=\frac{\operatorname{Re}\left(z^{z}\right)}{\|z\|}$ is continuous at $z=0$ given $f(0)=0$	CO3	K2	50
2.	Prove that the function $\mathrm{f}(x, y)=x^{3}-3 x y^{2}-5 y$ is harmonic everywhere. Find its harmonic conjugate.	CO3	K3	52
3	Show that $f(z)=e^{z}$ is analytic for all z . Find its derivative.	CO3	K1	54
4	If the function $u=a x^{3}+b x y$ is harmonic then find a and b . Also find its harmonic conjugate.	CO3	K3	55
5	Verify $u=x^{2}-y^{2}-y$ is harmonic in the whole complex plane and find a harmonic conjugate function v of u is no where analytic	CO3	K3	52
6	Find the conjugate function V and express $u+i v$ as an analytic function of z.	CO3	K1	56
7	Show that the function $u=e^{-2 x y} \sin \left(x^{2}-y^{2}\right)$ is harmonic.	CO3	K2	53
8	Find the image of the regions $2<\|z\|<3$ and $\|\operatorname{argz}\|<\frac{\pi}{4}$ under the transformation $w=z^{2}$ and plot it	CO3	K3	60
9	Find the fixed points of the bilinear transformation $w=\frac{z-1}{z+1}$	CO3	K2	62
10	Find the image of the following infinite strips under the mapping $w=\frac{1}{z}$ $\frac{1}{4}<y<\frac{1}{2}$	CO3	K2	65
11	Find the image of the region $\left\|z-\frac{1}{3}\right\| \leq \frac{1}{3}$ under the transformation $\mathrm{w}=\frac{1}{z}$	CO3	K1	70
12	Prove that $f(z)=e^{z}$ is conformal	CO3	K2	74

MODULE 4

Q.NO	QUESTIONS	CO	KL	PAGE NO
1	Evaluate $\int_{C} \operatorname{Re} z d z, \mathrm{C}$ is the shortest path from $1+i$ to $3+3 i$	CO4	K1	78
2.	Evaluate $\int_{C} \operatorname{Im} z^{2} d z$ counter clockwise around the triangle with vertices $0,1, i$	CO4	K2	79
3	Evaluate $\int_{0}^{1+i}\left(x^{2}-i y\right) \mathrm{dz}$ along $\quad y=x$	CO4	K3	81
4	Evaluate $\oint_{C} \frac{d z}{z-3 i} \mathrm{C}$ is the circle $\|z\|=\pi$ counter clock wise	CO4	K3	84
5	Evaluate $\oint_{C} \frac{\sin z}{z+2 i z} d z C:\|z-4-2 i\|=5.5$	CO4	K1	85
6	Evaluate $\oint_{C} \frac{e^{z}}{z e^{z}-2 i z} d z \quad C:\|z\|=0.6$	CO4	K2	87
7	Integrate $\oint_{C} \frac{z^{6}}{(2 z-1)^{6}} d z$ where Cis the unit circle	CO4	K3	89
8	Integrate $\oint_{C} \frac{z^{3}+\sin z}{(z-i)^{3}} d z$ where Cis the boundary of a square wit $\pm 2, \pm 2 i$ counterclock wise	CO4	K2	90
9	Integrate $\oint_{C} \frac{\cos \pi z^{2}+\sin \pi z^{2}}{(z-1)(z-2)} d z$ where $C:\|z\|=$ 3 clock wise	CO4	K2	93
10	Integrate $\oint_{C} \frac{\exp \left(z^{2}\right)}{z(z-2 i)^{2}} d z$ where $C:\|z-3 i\|=$ 2 clock wise	CO4	K3	95
11	Find the Taylor series $f(z)=\frac{1}{z^{2}-z-6}$ about $z=-1$	CO4	K3	96
12	Find the Taylor se ries of $f(z)=\frac{1}{z}$ about $z=2$	C04	K3	96

MODULE 5

Q.NO	QUESTIONS	CO	KL	PAGE NO
1	1. Expand $f(z)=\frac{1}{z-z^{3}}$ in Laurent series for the region $1<\|z+1\|<2$	CO5	K1	98
2.	Expand $f(z)=\frac{z}{(z+1)(z+2)}$ in Laurent series about $z=-2$	C05	K1	99
3	Find the Laurent series of $\frac{1}{z^{3}-z^{4}}$ with Centre 0	C05	K2	100
4	What type of singularity have the function $f(z)=\frac{1}{\cos z-\sin z}$	C05	K3	103
5	Expand $f(z)=\frac{z-1}{z^{2}-5 z+6}$ in $2<\|z\|<3$ as a Laurent series	C05	K1	105
6	Determine and classify the singularities of the function $f(z)=e^{\frac{1}{z}}$	C05	K3	108
7	Find all singular points and corresponding residues of $f(z)=\frac{z+2}{(z+1)^{2}(z-2)}$	C05	K3	110
8	Find the residues of $f(z)=\frac{50 z}{z^{3}+2 z^{2}-7 z+4}$	C05	K3	115
9	Find the residue of $\frac{e^{2}}{z^{3}}$ at its pole.	C05	K2	113
10	Evaluate $\oint_{C} \frac{d z}{\left(z^{2}+4\right)^{2}} \quad$ where $C:\|z-2-i\|=3.2$	C05	K3	116
11	Use residue theorem to evaluate $\int_{C} \frac{\cosh \pi z}{z^{2}+4} d z$ where C is $\|z\|=$ 3.	C05	K3	117
12	Evaluate $\oint_{C} \frac{z-23}{z^{2}-4 z-5} d z \quad$ whereC: $\|z-i\|=2$	C05	K3	118

MODULE I

PARTIAL DIFFERENTIAL EQUATIONS

SECTION:17.1 PARTIAL DIFFERENTIALEQUATION

An equation that contatins partial derivatives of an unknown function is called a partial differential equation. In a pde the unknown function or dependent variable, say U depends on two or more independent variables.

The following notations are adopted throughout the study of Pde's

$$
\begin{aligned}
& \mathrm{p}=\frac{\partial \mathrm{z}}{\partial x}=Z_{x} \quad \mathrm{q}=\frac{\partial \mathrm{z}}{\partial y}=Z_{y} \quad \mathrm{r}=\frac{\partial^{2} z}{\partial x^{2}}=z_{x x} \quad \mathrm{~s}=\frac{\partial^{2} z}{\partial x \partial y}=Z_{x y} \\
& \mathrm{t}=\frac{\partial^{2} \mathrm{z}}{\partial y^{2}}=Z_{y y}
\end{aligned}
$$

SECTION:17.2 FORMATION OF PARTIAL DIFFERENTIALEQUATION

Pde's are formed by eliminating arbitrary constants or arbitrary functions from a relation which contains three or more variables.

ELIMINATION OF ARBITRARY CONSTANTS

Suppose we have an equation $f(x, y, z, a, b)=0$ where ' a ' and ' b ' are arbitrary constants. Let us consider z as a function(dependent variable) of two independent varibles x and y. We now form a pde by eliminating ' a ' and ' b ' by differentiating the given equation. We get another function $\phi(x, y, z, p, q)=0$ which is a pde of first order.

REMARK

If the number of arbitrary constants to be eliminated is equal to the number of independent variables then we get a first orderpde.

If the number of arbitrary constants to be eliminated is more than the number of independent variables then we get a higher order pde.

Similarly we can eliminate arbitrary functions. Elimination of arbitrary functions forms the $P D E P p+Q q=R \quad$ where P, Q, R are functions of x, y, z

PROBLEMS

I Find the partial differential equation by elimination arbitrary constants from the following
1.

$$
z=(x-a)^{2}+(y-b)^{2}
$$

Solution:

$$
\begin{equation*}
z=(x-a)^{2}+(y-b)^{2} . \tag{1}
\end{equation*}
$$

Differentiating (1) partially w.r.t. x we get
$\frac{\partial z}{\partial x}=2(x-a) \quad$ ie, $p=2(x-a) \quad \rightarrow \quad x-a=\frac{p}{2}$
Differentiating (1) partially w.r.t. y we get

$$
\frac{\partial z}{\partial y}=2(y-b) \quad \text { ie, } q=2(y-b) \quad \rightarrow \quad y-b=\frac{q}{2}
$$

$$
(\mathbf{1})===>z=\left(\frac{\boldsymbol{p}}{\mathbf{2}}\right)^{2}+\left(\frac{\boldsymbol{q}}{\mathbf{2}}\right)^{2}
$$

ie, $\quad 4 z=p^{2}+q^{2}$ which is the required PDE
2.

$2 z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$.

Solution. Differentiating (i) partially with respect to x and y, we get

$$
\begin{array}{lll}
2 \frac{\partial z}{\partial x}=\frac{2 x}{a^{2}} & \text { or } & \frac{1}{a^{2}}=\frac{1}{x} \frac{\partial z}{\partial x}=\frac{p}{x} \\
\text { and } \quad \frac{2 \hat{\partial}}{\partial y}=\frac{2 y}{b^{2}} & \text { or } & \frac{1}{b^{2}}=\frac{1}{y} \frac{\partial z}{\partial y}=\frac{q}{y}
\end{array}
$$

Substituting these values of $1 / a^{2}$ and $1 / b^{2}$ in (i), we get

$$
2 z=x p+y q
$$

as the desired partial differential equation of the first order.
3. $z=a x+b y+a^{2}+b^{2}$

Solution:

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=a \quad \text { or } p=a \\
& \frac{\partial z}{\partial y}=b \quad \text { or } \quad q=b
\end{aligned}
$$

Substituting in the given equation we get

$$
z=p x+q y+p^{2}+q^{2}
$$

4. Find the differential equation of all planes which are at a constant distance a from the origin

Solution:

Equation of a plane in normal form is

$$
l x+m y+n z=a
$$

Where I,m,n are the d.c.s of the normal from the origin to the plane.

Then

$$
\begin{aligned}
& l^{2}+m^{2}+n^{2}=1 \text { or } n=\sqrt{\left(1-l^{2}-m^{2}\right)} \\
& l x+m y+\sqrt{\left(1-l^{2}-m^{2}\right)} z=a
\end{aligned}
$$

\therefore (i) becomes
Differentiating partially w.r.t. x, we get

$$
l+\sqrt{\left(1-l^{2}-m^{2}\right)} \cdot p=0
$$

Differentiating partially w.r.t. y, we get

$$
m+\sqrt{\left(1-l^{2}-m^{2}\right)} \cdot q=0
$$

Now we have to eliminate l, m from (ii), (iii) and (iv).
From (iii), $l=-\sqrt{\left(1-l^{2}-m^{2}\right)} \cdot p$ and $m=-\sqrt{\left(1-l^{2}-m^{2}\right)} \cdot q$
Squaring and adding, $l^{2}+m^{2}=\left(1-l^{2}-m^{2}\right)\left(p^{2}+q^{2}\right)$
or

$$
\left(l^{2}+m^{2}\right)\left(1+p^{2}+q^{2}\right)=p^{2}+q^{2} \text { or } 1-l^{2}-m^{2}=1-\frac{p^{2}+q^{2}}{1+p^{2}+q^{2}}=\frac{1}{1+p^{2}+q^{2}}
$$

Also

$$
l=-\frac{p}{\sqrt{\left(1+p^{2}+q^{2}\right)}} \text { and } m=-\frac{q}{\sqrt{\left(1+p^{2}+q^{2}\right)}}
$$

Substituting the values of l, m and $1-l^{2}-m^{2}$ in (ii), we obtain

$$
\frac{-p x}{\sqrt{\left(1+p^{2}+q^{2}\right)}}-\frac{q y}{\sqrt{\left(1+p^{2}+q^{2}\right)}}+\frac{1}{\sqrt{\left(1+p^{2}+q^{2}\right)}} z=a
$$

or $\quad z=p x+q y+a \sqrt{\left(1+p^{2}+q^{2}\right)}$ which is the required partial differential equation.
5.

Find the differential equation of all spheres of fixed radius having their centres in the xy plane

Solution:

Equarion of sphere with centre($h, k, 0$) in xy plane and radius ' r ' is
$(x-h)^{2}+(y-k)^{2}+z^{2}=r^{2}$

Differentiating the given equation w.r.t ' x '

$$
\begin{gathered}
2(x-h)+2 z \frac{\partial z}{\partial x}=0 \quad \text { ie, } x-h+p z=0 \\
x-h=-p z
\end{gathered}
$$

Differentiating the given equation w.r.t ' \mathbf{y} '

$$
\begin{gathered}
2(y-k)+2 z \frac{\partial z}{\partial y}=0 \quad \text { ie, } y-k+q z=0 \\
y-k=-q z
\end{gathered}
$$

Therefore the given equation become $(-p z)^{2}+(-q z)^{2}+z^{2}=r^{2}$

$$
z^{2}\left(p^{2}+q^{2}+1\right)=r^{2}
$$

6. Form a pde by eliminating a,b,c $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$

Solution:

Consider the function $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1----------(1)$ Differentiating (1) partially w.r.t x we get

$$
\begin{gather*}
\frac{2 x}{a^{2}}+\frac{2 z}{c^{2}} \frac{\partial z}{\partial x}=0 \\
\frac{x}{a^{2}}=-\frac{z}{c^{2}} \frac{\partial z}{\partial x}----------(\tag{2}
\end{gather*}
$$

$$
\begin{equation*}
\frac{c^{2}}{a^{2}}=-\frac{z}{x} p \tag{3}
\end{equation*}
$$

Differentiating (2) partially w.r.t x we get

$$
\begin{gather*}
\frac{1}{a^{2}}=-\frac{1}{c^{2}}\left[z \frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial z}{\partial x} * \frac{\partial z}{\partial x}\right] \\
\frac{c^{2}}{a^{2}}=-\left[z r+p^{2}\right]----------(4 \tag{4}
\end{gather*}
$$

Equating (3) and (4) we get

$$
\begin{gathered}
-\frac{z}{x} p=-\left[z r+p^{2}\right] \\
z r+p^{2}-\frac{z}{x} p=0 \text { which is the required } p d e
\end{gathered}
$$

II Form pde by eliminating arbitrary function

1. $x y z=\phi(x+y+z)$

Solution:

Solution is of the form
$P p+Q q=R$
Where $\mathrm{P}=\left|\begin{array}{ll}\boldsymbol{U}_{y} & U_{z} \\ V_{y} & V_{z}\end{array}\right| \mathrm{Q}=\left|\begin{array}{ll}\boldsymbol{U}_{z} & \boldsymbol{U}_{x} \\ V_{z} & V_{x}\end{array}\right| \quad \mathrm{R}=\left|\begin{array}{ll}\boldsymbol{U}_{x} & U_{y} \\ V_{x} & V_{y}\end{array}\right|$
$x y z=\phi(x+y+z) \rightarrow f(x y z, x+y+z)=0$
Here U=xyz, V=x+y+z
$\mathrm{P}=\left|\begin{array}{cc}x z & x y \\ 1 & 1\end{array}\right|=\mathrm{x}(\mathrm{z}-\mathrm{y})$
$Q=\left|\begin{array}{cc}x y & y z \\ 1 & 1\end{array}\right|=y(x-z)$
$R=\left|\begin{array}{cc}y z & x z \\ 1 & 1\end{array}\right|=z(y-x)$

Solution $P p+Q q=R \rightarrow x(z-y) p+y(x-z) q=z(y-x)$

2. $z=y^{2}+2 f\left(\frac{1}{x}+\log y\right)$

Solution:

Solution is of the form
Where \(\mathrm{P}=\left|$$
\begin{array}{ll}\boldsymbol{U}_{y} & \boldsymbol{U}_{z} \\
V_{y} & V_{z}\end{array}
$$\right| \quad \mathrm{Q}=\left|\begin{array}{ll}\boldsymbol{U}_{z} \& \boldsymbol{U}_{x}

V_{z} \& V_{x}\end{array}\right| \quad\)| $\mathrm{Pp}+\mathrm{Qq}=\mathrm{R}$ | $\mathrm{R}=\left\|\begin{array}{ll}\boldsymbol{U}_{x} & \boldsymbol{U}_{y} \\ V_{x} & V_{y}\end{array}\right\|$ |
| :--- | :--- |

Here $z=y^{2}+2 f\left(\frac{1}{x}+\log y\right) \rightarrow \phi\left(\frac{z-y^{2}}{2}, \frac{1}{x}+\log y\right)=0$
Here $\mathrm{U}=\frac{z-y^{2}}{2} \quad \mathrm{~V}=\frac{1}{x}+\log y$
$\mathrm{P}=\left|\begin{array}{cc}-y & \frac{1}{2} \\ \frac{1}{y} & 0\end{array}\right|=-\frac{1}{2 y} \quad \mathrm{Q}=\left|\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & -\frac{1}{x^{2}}\end{array}\right|=-\frac{1}{2 x^{2}} \quad \mathrm{R}=\left|\begin{array}{cc}0 & -y \\ -\frac{1}{x^{2}} & \frac{1}{y}\end{array}\right|=-\frac{y}{x^{2}}$
Therefore solution is $-\frac{1}{2 y} p+-\frac{1}{2 x^{2}} q=-\frac{y}{x^{2}} \rightarrow x^{2} p+y q-2 y^{2}=0$
3. $f\left(x+y+z, x^{2}+y^{2}+z^{2}\right)=0$

Solution:

Here $\mathrm{U}=x+y+z \mathrm{~V}=x^{2}+y^{2}+z^{2}$
$\mathrm{P}=\left|\begin{array}{cc}1 & 1 \\ 2 y & 2 z\end{array}\right|=2(\mathrm{z}-\mathrm{y}) \quad \mathrm{Q}=\left|\begin{array}{cc}1 & 1 \\ 2 z & 2 x\end{array}\right|=2(\mathrm{x}-\mathrm{z}) \quad \mathrm{R}=\left|\begin{array}{cc}1 & 1 \\ 2 x & 2 y\end{array}\right|=2(y-x)$

Solution is $2(z-y) p+2(x-z) q=2(y-x) \rightarrow(z-y) p+(x-z) q=(y-x)$
4. Form pde by eliminating arbitrary function
$(\mathrm{a}) \mathrm{z}=(x+y) \phi\left(x^{2}-y^{2}\right)$
(b) $z=f(x+a t)+g(x-a t)$

Solution:

From (i),

$$
\begin{aligned}
& p=\frac{\partial z}{\partial x}=(x+y) \phi^{\prime}\left(x^{2}-y^{2}\right) \cdot 2 x+\phi\left(x^{2}-y^{2}\right), \\
& q=\frac{\partial z}{\partial y}=(x+y) \phi^{\prime}\left(x^{2}-y^{2}\right) \cdot(-2 y)+\phi\left(x^{2}-y^{2}\right)
\end{aligned}
$$

$$
p-\frac{z}{x+y}=2 x(x+y) \phi^{\prime}\left(x^{2}-y^{2}\right)
$$

From (ii),

$$
q-\frac{z}{x+y}=-2 y(x+y) \phi^{\prime}\left(x^{2}-y^{2}\right)
$$

Division gives $\frac{p-z /(x+y)}{q-z /(x+y)}=-\frac{x}{y}$
i.e., $\quad[p(x+y)-z] y+[q(x+y)-z] x$
i.e., $\quad(x+y)(p y+q x)-z(x+y)=0$

Hence $\quad p y+q z=z$ is required equation.
(b) We have $\quad z=f(x+a t)+g(x-a t)$

Differentiating z partially with respect to x and t,

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=f^{\prime}(x+a t)+g^{\prime}(x-a t), \frac{\partial^{2} z}{\partial x^{2}}=f^{\prime \prime}(x+a t)+g^{\prime \prime}(x-a t) \\
& \frac{\partial z}{\partial t}=a f^{\prime}(x+a t)-a g^{\prime}(x-a t), \frac{\partial^{2} z}{\partial t^{2}}=a^{2} f^{\prime \prime}(x+a t)+a^{2} g^{\prime \prime}(x-a t)=a^{2} \frac{\partial^{2} z}{\partial x^{2}}
\end{aligned}
$$

Thus the desired partial differential equation is $\frac{\partial^{2} z}{\partial t^{2}}=a^{2} \frac{\partial^{2} z}{\partial x^{2}}$
which is an equation of the second order and (i) is its solution.

SECTION:17.3 SOLUTIONS OF A PARTIAL DIFFERENTIAL EQUATION

It is clear from the above examples that a partial differential equation can result both from elimination of arbitrary constants and from the elimination of arbitrary functions.

The solution

$$
\begin{equation*}
f(x, y, z, a, b)=0 \tag{1}
\end{equation*}
$$

of a first order partial differential equation which contains two arbitrary constants is called a complete integral.

A solution obtained from the complete integral by assigning particular values to the arbitrary constants is called a particular integral.

If we put $b=\phi(a)$ in (1) and find the envelope of the family of surfaces $f[x, y, z, \phi(a)]=0$, then we get e solution containing an arbitrary function ϕ, which is called the general integral.

The envelope of the family of surfaces (1), with parameters a and b, if it exists, is called a singular inte gral. The singular integral differs from the particular integral in that it is not obtained from the completo integral by giving particular values to the constants.

SECTION:17.4 EQUATIONS SOLVABLE BY DIRECT INTEGRATION

We now consider such partial differential equations which can be solved by direct integration. In place of the usual constants of integration, we must, however use arbitrary functions of variables held fixed.

PROBLEMS

1. Solve $\frac{\partial^{3} z}{\partial x^{2} \partial y}+18 x y^{2}+\sin (2 x-y)=0$

Solution. Integrating twice with respect to x (keeping y fixed),

$$
\begin{aligned}
& \frac{\partial^{2} z}{\partial x \partial y}+9 x^{2} y^{2}-\frac{1}{2} \cos (2 x-y)=f(y) \\
& \frac{\partial z}{\partial y}+3 x^{3} y^{2}-\frac{1}{4} \sin (2 x-y)=x f(y)+g(y) .
\end{aligned}
$$

Now integrating with respect to y (keeping x fixed)

$$
z+x^{3} y^{3}-\frac{1}{4} \cos (2 x-y)=x \int f(y) d y+\int g(y) d y+w(x)
$$

The result may be simplified by writing

$$
\int f(y) d y=u(y) \text { and } \int g(y) d y=v(y) .
$$

Thus $z=\frac{1}{4} \cos (2 x-y)-x^{3} y^{3}+x u(y)+v(y)+w(x)$ where u, v, w are arbitrary functio ss .
2. Solve $\frac{\partial^{2} z}{\partial x^{2}}+z=0$ given that when $x=0 z=e^{y}$ and $\frac{\partial z}{\partial x}=1$

Solution. If z were function of x alone, the solution would have been $z=A \sin x+B \cos x$, where A ad B are constants. Since z is a function of x and y, A and B can be arbitrary functions of y. Hence the solution the given equation is $z=f(y) \sin x+\phi(y) \cos x$

$$
\therefore \quad \frac{\partial z}{\partial x}=f(y) \cos x-\phi(y) \sin x
$$

When $x=0 ; z=e^{y}, \quad \therefore e^{y}=\phi(y)$. When $x=0, \frac{\partial z}{\partial x}=1, \quad \therefore \quad 1=f(y)$.
Hence the desired solution is $z=\sin x+e^{y} \cos x$.
3. Solve $\frac{\partial^{2} z}{\partial x \partial y}=\sin x \sin y$ for which $\frac{\partial z}{\partial y}=-2 \sin y$ when $x=$

0 , and $z=0$ when y is an odd multiple of $\frac{\pi}{2}$
Solution. Given equation is $\frac{\partial^{2} z}{\partial x \partial y}=\sin x \sin y$
Integrating w.r.t. x, keeping y constant, we get

$$
\frac{\partial z}{\partial y}=-\cos x \sin y+f(y)
$$

When $x=0, \frac{\partial z}{\partial y}=-2 \sin y, \quad \therefore-2 \sin y=-\sin y+f(y) \quad$ or $f(y)=-\sin y$
\therefore (i) becomes $\frac{\partial z}{\partial y}=-\cos x \sin y-\sin y$
Now integrating w.r.t. y, keeping x constant, we get

$$
z=\cos x \cos y+\cos y+g(x)
$$

When y is an odd multiple of $\pi / 2, z=0$.
$\therefore \quad 0=0+0+g(x)$ or $g(x)=0$
Hence from (ii), the complete solution is $z=(1+\cos x) \cos y$.

SECTION:17.5 LINEAR EQUATIONS OF FIRST ORDER

Consider a $P D E$ which is linear in P, Q, R is of the form $P p+Q q=R$, where P, Q, R are the functions of x, y, z. This is called Lagrange's linear equation which is of order one.

Method for solving Lagrange's linear equation.

1. Form the equation $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}$. This is known as Lagrange's auxiliary equation or subsidiary equation.
2. By the method of grouping or by the method of multipliers or both solve the auxiliary equations to get two independentsolutions $U(x, y, z)=C_{1}, V(x, y, z)=C_{2}$
Method of grouping

Suppose that one of the variable is either absent or cancels out from any pair of fractions of equation $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}$ and then a solutions can be obtained by using ususal methods. The same procedure is repeated with another pair of fractions of equation $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}$ for second independent solutions.

Method of multiplier

If $\mathrm{I}, \mathrm{m}, \mathrm{n}$ are three multipliers, then by a well known principles of algebra, each fraction $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}$ equalto $\frac{l d x+m d y+n d z}{l P+m Q+n R}$. Choose $\mathrm{I}, \mathrm{m}, \mathrm{n}$ such that $\mathrm{IP}+\mathrm{mQ}+\mathrm{nR}=0$ then Id $x+m d y+n d z=0$. Integrating we get $U(x, y, z)=C_{1}$. This method may be repeated to get another independent solution $\mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\boldsymbol{C}_{2}$. This multiplierr $\mathrm{I}, \mathrm{m}, \mathrm{n}$ are called Lagrangian Multiplier

3. General solution is $\phi(\mathrm{U}, \mathrm{V})=0$ or $\mathrm{U}=\boldsymbol{\phi}(\mathrm{V})$

PROBLEMS

1. Solve $\frac{y^{2} z}{x} p+x z q=y^{2}$

Solution. Rewriting the given equation as

$$
y^{2} z p+x^{2} z q=y^{2} x \text {, }
$$

The subsidiary equations are $\frac{d x}{y^{2} z}=\frac{d y}{x^{2} z}=\frac{d z}{y^{2} x}$
The first two fractions give $x^{2} d x=y^{2} d y$.
Integrating, we get $\quad x^{3}-y^{3}=a$
Again the first and third fractions give $x d x=z d z$
Integrating, we get $\quad x^{2}-z^{2}=b$
Hence from (i) and (ii), the complete solution is

$$
x^{3}-y^{3}=f\left(x^{2}-z^{2}\right) .
$$

2. Solve $p z-q z=z^{2}+(x+y)^{2}$

Solution: Here the auxiliary equations are
$\frac{d x}{z}=\frac{d y}{-z}=\frac{d z}{z^{2}+(x+y)^{2}}$
The first two fractions we get $d x=-d y$
integrating $x=-y+c \rightarrow x+y=c=\rightarrow$
$\mathrm{U}=\mathrm{x}+\mathrm{y}$
Again first and third
$\frac{d x}{z}=\frac{d z}{z^{2}+(x+y)^{2}} \rightarrow \frac{d x}{z}=\frac{d z}{z^{2}+c^{2}}$
Integrating $x=\frac{1}{2} \log \left(z^{2}+c^{2}\right)+c_{1} \rightarrow 2 x-\log \left(z^{2}+c^{2}\right)=2 c_{1}$
$\mathrm{V}=2 \mathrm{x}-\boldsymbol{\operatorname { l o g }}\left(\mathrm{z}^{2}+\mathrm{c}^{2}\right)$
The general solution is $\phi\left(x+y, 2 x-\log \left(z^{2}+c^{2}\right)\right)=0$
3. Solve $x y d x+y^{2} d y=z x y-2 x^{2}$

Solution:

A.E is $\frac{d x}{x y}=\frac{d y}{y^{2}}=\frac{d z}{z x y-2 x^{2}}$

From first two equations $\frac{d x}{x y}=\frac{d y}{y^{2}} \rightarrow \frac{d x}{x}=\frac{d y}{y}$
Integrating $\log \mathrm{x}=\log \mathrm{y}+\log c_{1} \rightarrow \frac{x}{y}=c_{1--(1)}$

$$
\mathrm{U}=\frac{x}{y}
$$

From $2^{\text {nd }}$ and $3^{\text {rd }} \frac{d y}{y^{2}}=\frac{d z}{z x y-2 x^{2}}$
Substitute $x=c_{1} y$ (from eqn (1))

$$
\begin{aligned}
\frac{d y}{y^{2}} & =\frac{d z}{z c_{1} y y-2\left(c_{1} y\right)^{2}} \\
\frac{d y}{y^{2}} & =\frac{d z}{c_{1} y^{2}\left(z-2 c_{1}\right)} \\
c_{1} d y & =\frac{d z}{z-2 c_{1}}
\end{aligned}
$$

Integrating $c_{1} y=\log \left(z-2 c_{1}\right)+\log c_{2}$
$\mathrm{X}=\log \left(\mathrm{z}-2 \frac{x}{y}\right)+\log c_{2} \rightarrow \log e^{x}-\log \left(\mathrm{z}-2 \frac{x}{y}\right)=\log c_{2}$
$\frac{e^{x}}{\mathrm{z}-2 \frac{x}{y}}=c_{2} \Rightarrow \frac{y e^{x}}{\mathrm{yz}-2 x}=c_{2}$
$\mathrm{V}=\frac{y e^{x}}{\mathrm{yz}-2 x}$
General solution $\phi\left(\frac{x}{y}, \frac{y e^{x}}{y z-2 x}\right)=0$
4. Solve $p-2 q=3 x^{2} \sin (y+2 x)$

Solution: Here the auxiliary equations are

$$
\begin{equation*}
\frac{d x}{1}=\frac{d y}{-2}=\frac{d z}{3 x^{2} \sin (y+2 x)}-------------11 \tag{1}
\end{equation*}
$$

From first two equations $\frac{d x}{1}=\frac{d y}{-2} \rightarrow 2 \mathrm{dx}=-\mathrm{dy}$
Integrating $2 x+y=c_{1}$

$$
\mathrm{U}=2 \mathrm{x}+\mathrm{y}
$$

From $1^{\text {st }}$ and $3^{\text {rd }}$
$\frac{d x}{1}=\frac{d z}{3 x^{2} \sin (y+2 x)} \Rightarrow \mathrm{dx}=\frac{d z}{3 x^{2} \sin \left(c_{1}\right)}$
ie, $3 x^{2} \operatorname{sinc}_{1} d x=d z$
Integrating $x^{3} \operatorname{sinc}_{1}=z+c_{2} \Rightarrow x^{3} \operatorname{sinc}_{1}-z=c_{2}$
$\mathrm{V}=\boldsymbol{x}^{3} \sin _{1}-\mathrm{z}$
General solution $\phi\left(2 x+y, x^{3} \operatorname{sinc}_{1}-z\right)=0$
5. Solve $x^{2}(y-z) p+y^{2}(z-x) q=z^{2}(x-y)$

Solution. Here the subsidiary equations are

$$
\frac{d x}{x^{2}(y-z)}=\frac{d y}{y^{2}(z-x)}=\frac{d z}{z^{2}(x-y)}
$$

Using the multipliers $1 / x, 1 / y$ and $1 / z$, we have

$$
\text { each fraction }=\frac{\frac{1}{x} d x+\frac{1}{y} d y+\frac{1}{z} d z}{0}
$$

$$
\begin{array}{ll}
\therefore \quad & \frac{d x}{x}+\frac{d y}{y}+\frac{d z}{z}=0 \text { which on integration gives } \\
\log x+\log y+\log z=\log a & \text { or } \quad x y z=a
\end{array}
$$

Therefore
U=xyz
Using the multipliers $\frac{1}{x^{2}}, \frac{1}{y^{2}}$ and $\frac{1}{z^{2}}$, we get
each fraction $=\frac{\frac{1}{x^{2}} d x+\frac{1}{y^{2}} d y+\frac{1}{z^{2}} d z}{0}$
$\therefore \quad \frac{d x}{x^{2}}+\frac{d y}{y^{2}}+\frac{d z}{z^{2}}=0$, which on integrating gives

$$
\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0
$$

$$
\mathrm{V}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}
$$

General solution $\phi\left(\mathrm{xyz}, \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=0$
6. Solve $\left(x^{2}-y z\right) p+\left(y^{2}-z x\right) q=z^{2}-x y$

Solution. Here the subsidiary equations are

$$
\begin{equation*}
\frac{d x}{x^{2}-y z}=\frac{d y}{y^{2}-z x}=\frac{d z}{z^{2}-x y} \tag{i}
\end{equation*}
$$

Each of these equations $=\frac{d x-d y}{x^{2}-y^{2}-(y-x) z}=\frac{d y-d z}{y^{2}-z^{2}-x(z-y)}$
i.e.,

$$
\frac{d(x-y)}{(x-y)(x+y+z)}=\frac{d(y-z)}{(y-z)(x+y+z)} \quad \text { or } \quad \frac{d(x-y)}{x-y}=\frac{d(y-z)}{y-z}
$$

Integrating,

$$
\begin{equation*}
\log (x-y)=\log (y-z)+\log c \quad \text { or } \quad \frac{x-y}{y-z}=c \tag{ii}
\end{equation*}
$$

Each of the subsidiary equations $(i)=\frac{x d x+y d y+z d z}{x^{3}+y^{3}+z^{3}-3 x y z}$

$$
\begin{equation*}
=\frac{x d x+y d y+z d z}{(x+y+z)\left(x^{2}+y^{2}+z^{2}-y z-z x-x y\right)} \tag{iii}
\end{equation*}
$$

Also each of the subsidiary equations $=\frac{d x+d y+d z}{x^{2}+y^{2}+z^{2}-y z-z x-x y}$

Equating (iii) and (iv) and cancelling the common factor, we get

$$
\frac{x d x+y d y+z d z}{x+y+z}=d x+d y+d z
$$

$$
\int(x d x+y d y+z d z)=\int(x+y+z) d(x+y+z)+c^{\prime}
$$

$$
x^{2}+y^{2}+z^{2}=(x+y+z)^{2}+2 c^{\prime} \text { or } x y+y z+z x+c^{\prime}=0
$$

Combining (ii) and (v), the general solution is

$$
\phi\left(\frac{x-y}{y-z}, x y+y z+z x\right)=0
$$

7. Solve $(m z-n y) p+(n x-l z) q=l y-m x$

Solution. Here the subsidiary equations are $\frac{d x}{m z-n y}=\frac{d y}{m x-l z}=\frac{d z}{l y-m x}$
Using multipliers x, y, and z, we get each fraction $=\frac{x d x+y d y+z d z}{0}$
$\therefore \quad x d x+y d y+z d z=0$ which on integration gives $x^{2}+y^{2}+z^{2}=a$
Again using multipliers l, m and n, we get each fraction $=\frac{l d x+m d y+n d z}{0}$
$\therefore \quad l d x+m d y+n d x=0$ which on integration gives $l x+m y+n z=b$

$$
\text { General solution } \phi\left(x^{2}+y^{2}+z^{2}, l x+m y+n z\right)=
$$

0
8. Solve $\left(x^{2}-y^{2}-z^{2}\right) p+2 x y q=2 x z$

Solution. Here the subsidiary equations are $\frac{d x}{x^{2}-y^{2}-z^{2}}=\frac{d y}{2 x y}=\frac{d z}{2 x z}$
From the last two fractions, we have $\frac{d y}{y}=\frac{d z}{z}$
which on integration gives $\log y=\log z+\log a$ or $y / z=a$
Using multipliers x, y and z, we have

$$
\text { each fraction }=\frac{x d x+y d y+z d z}{x\left(x^{2}+y^{2}+z^{2}\right)} \quad \therefore \quad \frac{2 x d x+2 y d y+2 z d z}{x^{2}+y^{2}+z^{2}}=\frac{d z}{z}
$$

which on integration gives $\log \left(x^{2}+y^{2}+z^{2}\right)=\log z+\log b$
or

$$
\frac{x^{2}+y^{2}+z^{2}}{z}=b
$$

General solution $\boldsymbol{\phi}\left(\frac{y}{z}, \frac{x^{2}+y^{2}+z^{2}}{z}\right)=\mathbf{0}$
9. Solve $(y-z) p+(x-y) q=z-x$

Solution

Here the auxiliary equations are $\frac{d x}{y-z}=\frac{d y}{x-y}=\frac{d z}{z-x}$
Choose $1,1,1$ as multiplier, each fraction is equal to $\frac{d x+d y+d z}{0}$
Integrating $x+y+z=a$

$\mathrm{U}=\mathrm{x}+\mathrm{y}+\mathrm{z}$

Choose x, z, y as multiplier, each fraction is equal to $\frac{x d x+z d y+y d z}{0}$

$$
\Rightarrow x d x+d(z y)=0
$$

Integrating $\frac{x^{2}}{2}+z y=b$ General solution $\phi\left(x+y+z, \frac{x^{2}}{2}+z y\right)=0$

SECTION:17.7 NONLINEAR EQUATIONS OF FIRST ORDER

Those equations in which p and q occur other than in the first degree are called non-linear differential equations of the first order. The complete solution of such an equation contains only two ar) itrar constants (i.e., equal to the number of independent variables involved) and the particular integral is obtai ed b. giving particular values to the constants.]

CHARPIT'S METHOD

[^0]Eliminating $\frac{\partial p}{\partial x}$ between the equations (4) and (5), we get

$$
\left(\frac{\partial f}{\partial x} \frac{\partial \phi}{\partial p}-\frac{\partial \phi}{\partial x} \frac{\partial f}{\partial p}\right)+\left(\frac{\partial f}{\partial z} \frac{\partial \phi}{\partial p}-\frac{\partial \phi}{\partial z} \frac{\partial f}{\partial p}\right) p+\left(\frac{\partial f}{\partial q} \frac{\partial \phi}{\partial p}-\frac{\partial \phi}{\partial q} \frac{\partial f}{\partial p}\right) \frac{\partial q}{\partial x}=0
$$

Also eliminating $\frac{\partial q}{\partial y}$ between the equations (6) and (7), we obtain

$$
\left(\frac{\partial f}{\partial y} \frac{\partial \phi}{\partial q}-\frac{\partial \phi}{\partial y} \frac{\partial f}{\partial q}\right)+\left(\frac{\partial f}{\partial z} \frac{\partial \phi}{\partial q}-\frac{\partial \phi}{\partial z} \frac{\partial f}{\partial q}\right) q+\left(\frac{\partial f}{\partial p} \frac{\partial \phi}{\partial q}-\frac{\partial \phi}{\partial p} \frac{\partial f}{\partial q}\right) \frac{\partial p}{\partial y}=0
$$

Adding (8) and (9) and using $\frac{\partial q}{\partial x}=\frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial p}{\partial y}$,
we find that the last terms in both cancel and the other terms, on rearrangement, give

$$
\begin{array}{r}
\left(\frac{\partial f}{\partial x}+F \frac{\partial f}{\partial z}\right) \frac{\partial \phi}{\partial p}+\left(\frac{\partial f}{\partial y}+q \frac{\partial f}{\partial z}\right) \frac{\partial \phi}{\partial q}+\left(-p \frac{\partial f}{\partial p}-q \frac{\partial f}{\partial q}\right) \frac{\partial \phi}{\partial z}+\left(-\frac{\partial f}{\partial p}\right) \frac{\partial \phi}{\partial x}+\left(-\frac{\partial f}{\partial q}\right) \frac{\partial \phi}{\partial y}=0 \\
i . e ., \quad\left(-\frac{\partial f}{\partial p}\right) \frac{\partial \phi}{\partial x}+\left(-\frac{\partial f}{\partial q}\right) \frac{\partial \phi}{\partial y}+\left(-p \frac{\partial f}{\partial p}-q \frac{\partial f}{\partial q}\right) \frac{\partial \phi}{\partial z}+\left(\frac{\partial f}{\partial x}+p \frac{\partial f}{\partial z}\right) \frac{\partial \phi}{\partial p}+\left(\frac{\partial f}{\partial y}+q \frac{\partial f}{\partial z}\right) \frac{\partial \phi}{\partial q}=0
\end{array}
$$

This is Lagrange's linear equation ($\S 17.5$) with x, y, z, p, q as independent variables and ϕ as the d pendent variable. Its solution will depend on the solution of the subsidiary equations

$$
\frac{d x}{-\frac{\partial f}{\partial p}}=\frac{d y}{-\frac{\partial f}{\partial q}}=\frac{d z}{-p \frac{\partial f}{\partial p}-q \frac{\partial f}{\partial q}}=\frac{d p}{\frac{\partial f}{\partial x}+p \frac{\partial f}{\partial z}}=\frac{d q}{\frac{\partial f}{\partial y}+q \frac{\partial f}{\partial z}}=\frac{\partial \phi}{0}
$$

An integral of these equations involving p or q or both, can be taken as the required relation (3), whic alongwith (1) will give the values of p and q to make (2) integrable. Of course, we should take the simplest of th integrals so that it may be easier to solve for p and q.

PROBLEMS

1. Solve $\left(p^{2}+q^{2}\right) y=q z$

Solution. Let $f(x, y, z, p, q)=\left(p^{2}+q^{2}\right) y-q z=0$
Charpit's subsidiary equations are

$$
\frac{d x}{-2 p y}=\frac{d y}{z-2 q y}=\frac{d z}{-q z}=\frac{d p}{-p q}=\frac{d q}{p^{2}}
$$

The last two of these give $p d p+q d q=0$
Integrating, $\quad p^{2}+q^{2}=c^{2}$
Now to solve (i) and (ii), put $p^{2}+q^{2}=c^{2}$ in (i), so that $q=c^{2} y / z$
Substituting this value of q in (ii), we get $p=c \sqrt{\left(z^{2}-c^{2} y^{2}\right) / z}$
Hence

$$
\begin{aligned}
d z=p d x+q d y & =\frac{c}{z} \sqrt{\left(z^{2}-c^{2} y^{2}\right)} d x+\frac{c^{2} y}{z} d y \\
z d z-c^{2} y d y & =c \sqrt{\left(z^{2}-c^{2} y^{2}\right)} d x \quad \text { or } \quad \frac{\frac{1}{2} d\left(z^{2}-c^{2} y^{2}\right)}{\sqrt{\left(z^{2}-c^{2} y^{2}\right)}}=c d x
\end{aligned}
$$

Integrating, we get $\sqrt{\left(z^{2}-c^{2} y^{2}\right)}=c x+a$ or $z^{2}=(a+c x)^{2}+c^{2} y^{2}$ which is the required complete integ
2. Solve $2 x z-p x^{2}-2 q x y+p q=0$

$$
\begin{equation*}
\text { Solution. Let } f(x, y, z, p, q)=2 x z-p x^{2}-2 q x y+p q=0 \tag{i}
\end{equation*}
$$

Charpit's subsidiary equations are

$$
\begin{array}{rlrl}
& \frac{d x}{x^{2}-q} & =\frac{d y}{2 x y-p}=\frac{d z}{p x^{2}-2 p q+2 q x y}=\frac{d p}{2 z-2 q y}=\frac{d q}{0} \\
\therefore \quad d q & =0 \text { or } q=a .
\end{array}
$$

Putting $q=a$ in (i), we get $p=\frac{2 x(z-a y)}{x^{2}-a}$
$\therefore \quad d z=p d x+q d y=\frac{2 x(z-a y)}{x^{2}-a} d x+a d y \quad$ or $\quad \frac{d z-a d y}{z-a y}=\frac{2 x}{x^{2}-a} d x$
Integrating, or

$$
\log (z-a y)=\log \left(x^{2}-a\right)+\log b
$$

$$
z-a y=b\left(x^{2}-a\right) \text { or } z=a y+b\left(x^{2}-a\right)
$$

which is the required complete solution.
3. Solve $2 z+p^{2}+q y+2 y^{2}=0$

Solution. Let $f(x, y, z, p, q)=2 z+p^{2}+q y+2 y^{2}$
Charpit's subsidiary equations are

$$
\frac{d x}{-2 p}=\frac{d y}{-y}=\frac{d z}{-\left(2 p^{2}+q y\right)}=\frac{d p}{2 p}=\frac{d q}{4 y+3 q}
$$

From first and fourth ratios,

$$
d p=-d x \text { or } p=-x+a
$$

Substituting $p=a-x$ in the given equation, we get

$$
q=\frac{1}{y}\left[-2 z-2 y^{2}-(a-x)^{2}\right]
$$

$$
\therefore \quad d z=p d x+q d y=(a-x) d x-\frac{1}{y}\left[2 z+2 y^{2}+(a-x)^{2}\right] d y
$$

Multiplying both sides by $2 y^{2}$,

$$
2 y^{2} d z+4 y z d y=2 y^{2}(a-x) d x-4 y^{3} d y-2 y(a-x)^{2} d y
$$

Integrating

$$
2 z y^{2}=-\left[y^{2}(a-x)^{2}+y^{4}\right]+b
$$

$y^{2}\left[(x-a)^{2}+2 z+y^{2}\right]=b$, which is the desired solution.

APPLICATION OF PARTIAL DIFFERENTIALEQUATIONS

SECTION:18.1 INTRODUCTION

In physical problems, we always seek a solution of the differential equation which satisfies some spec ied conditions known as the boundary conditions. The differential equation together with these boundary co tions, constitute a boundary value problem.

In problems involving ordinary differential equations, we may first find the general solution and didetermine the arbitrary constants from the initial values. But the same process is not applicable to prob. ms involving partial differential equations for the general solution of a partial differential equation contains ; bitrary functions which are difficult to adjust so as to satisfy the given boundary conditions. Most of the boun ary value problems involving linear partial differential equations can be solved by the following method.

SECTION:18.2 METHOD OF SEPERATION OF VARIABLES

It involves a solution which breaks up into a product of functions each of which contains only one of the variables.

PROBLEMS

1. Solve by the method of separation of variables $\frac{\partial^{2} z}{\partial x^{2}}-2 \frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=0$

Solution. Assume the trial solution $z=X(x) Y(y)$ where X is a function of x alone and Y that of y alone.

Substituting this value of z in the given equation, we have

$$
\begin{equation*}
X^{\prime \prime} Y-2 X^{\prime} Y+X Y^{\prime}=0 \quad \text { where } X^{\prime}=\frac{d X}{d x}, Y^{\prime}=\frac{d Y}{d y} \text { etc. } \tag{ii}
\end{equation*}
$$

Separating the variables, we get $\frac{X^{\prime \prime}-2 X^{\prime}}{X}=-\frac{Y^{\prime}}{Y}$
Since x and y are independent variables, therefore, (ii) can only be true if each side is equal to the same constant, a (say).

$$
\begin{equation*}
\therefore \quad \frac{X^{\prime \prime}-2 X^{\prime}}{X}=a, \text { i.e. } X^{\prime \prime}-2 X^{\prime}-a X=0 \tag{iii}
\end{equation*}
$$

and

$$
\begin{equation*}
-Y^{\prime} / Y=a, \text { i.e., } Y^{\prime}+a Y=0 \tag{iv}
\end{equation*}
$$

To solve the ordinary linear equation (iii), the auxiliary equation is

$$
m^{2}-2 m-a=0, \quad \text { whence } m=1 \sqrt{ }(1+a)
$$

\therefore the solution of (iii) is $X=c_{1} e^{(1+\sqrt{ }(1+a) \mid x}+c_{2} e^{(1-\sqrt{(1+a) \mid x}}$ and the solution of (iv) is $\quad Y=c_{3} e^{-a y}$,

Substituting these values of X and Y in (i), we get
i.e.,

$$
\begin{aligned}
& z=\left\{c_{1} e^{[1+\sqrt{(1+a)}] x}+c_{2} e^{[1-\sqrt{(1+a)}] x}\right\} \cdot c_{3} e^{-a y} \\
& z=\left\{k_{1} e^{[1+\sqrt{(1+a)} \mid x}+k_{2} e^{[1-\sqrt{(1+a)}] x}\right\} e^{-a y}
\end{aligned}
$$

which is the required complete solution.
2. Solve by the method of separation of variables
$\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$, where $\quad u(x, 0)=6 e^{-3 x}$

$$
\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u--(i)
$$

Solution. Assume the solution $u(x, t)=X(x) T(t)$
Substituting in the given equation, we have

$$
\begin{align*}
& X^{\prime \prime} T=2 X T^{\prime}+X T \text { or }\left(X^{\prime}-X\right) T=2 X T^{\prime} \\
& \frac{X^{\prime}-X}{2 X}=\frac{T^{\prime}}{T}=k \text { (say) } \\
& \therefore \quad X^{\prime}-X-2 k X=0 \quad \text { or } \quad \frac{X^{\prime}}{X}=1+2 k \quad \ldots(i) \quad \text { and } \quad \frac{T^{\prime}}{T}=k \tag{ii}\\
& \text { Solving (i), } \quad \log X=(1+2 k) x+\log \mathrm{c} \text { or } X=c e^{(1+2 k) x} \\
& \text { From (ii), } \quad \log T=k t+\log c^{\prime} \text { or } T=c^{\prime} e^{k t} \\
& \text { Thus } \quad u(x, t)=X T=c c^{\prime} e^{(1+2 k) x} e^{k t} \tag{iii}\\
& \text { Now } \quad 6 e^{-3 x}=u(x, 0)=c c^{\prime} e^{(1+2 k) x} \\
& \therefore \quad \quad c c^{\prime}=6 \text { and } 1+2 k=-3 \text { or } k=-2
\end{align*}
$$

Substituting these values in (iii), we get

$$
u=6 e^{-3 x} e^{-2 t} \text { i.e., } u=6 e^{-(3 x+2 t)} \text { which is the required solution. }
$$

3. Solve by the method of separation of variables

$x \frac{\partial u}{\partial x}-2 y \frac{\partial u}{\partial y}=0$
Solution: $x \frac{\partial u}{\partial x}-2 y \frac{\partial u}{\partial y}=0$

$$
U(x, y)=X(x) Y(y) \text { where } X \text { function of } x \text { and } Y \text { function of } y \text { only }
$$

$$
\begin{align*}
& \frac{\partial u}{\partial x}=X^{\prime} Y- \tag{2}\\
& \frac{\partial u}{\partial y}=X Y^{\prime} . \tag{3}
\end{align*}
$$

substituting (2)and (3)in (1) we get

$$
\begin{aligned}
& x\left(X^{\prime} Y\right)-2 y\left(X Y^{\prime}\right)=0 \\
& x\left(X^{\prime} Y\right)=2 y\left(X Y^{\prime}\right) \\
& \frac{x X^{\prime}}{X}=\frac{2 y Y^{\prime}}{Y}=k \\
& \frac{x X^{\prime}}{X}=k \quad \rightarrow \frac{X^{\prime}}{X}=\frac{k}{x} \quad \rightarrow \frac{d X}{X}=\frac{k}{x} d x
\end{aligned}
$$

integrating

$$
\begin{gathered}
\log X=k \log x+\log c_{1} \quad \rightarrow \log X=\log c_{1} x^{k} \quad \rightarrow X=c_{1} x^{k} \\
\frac{2 y Y^{\prime}}{Y}=k \quad \Rightarrow \frac{Y^{\prime}}{Y}=\frac{k}{2 y} \quad \Rightarrow \frac{d Y}{Y}=\frac{k}{2 y} d y
\end{gathered}
$$

integrating

$$
\log Y=\frac{k}{2} \log y+\log c_{2} \rightarrow \log Y=\log c_{2} y^{\frac{k}{2}} \rightarrow Y=c_{2} y^{\frac{k}{2}}
$$

General solution $\mathrm{u}(\mathrm{x}, \mathrm{y})=c_{1} c_{2} x^{k} y^{\frac{k}{2}}=c x^{k} y^{\frac{k}{2}}$

MODULE 2

APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

18.3 PARTIAL DIFFERENTIAL EQUATIONS OF ENGINEERING

A number of problems in engineering give rise to the following well-known partial differential equation :
(i) Wave equation : $\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}$.
(ii) One dimensional heat flow equation : $\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$.
(iii) Two dimensional heat flow equation which in steady state becomes the two dimensional Laplac 's equation: $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$.
(iv) Transmission line equations.
(v) Vibrating membrane. Two dimensional wave equation.
(vi) Laplace's equation in three dimensions.

Besides these, the partial differential equations frequently occur in the theory of Elasticity a d Hydraulics.

Starting with the method of separation of variables, we find their solutions subject to specific bounda y conditions and the combination of such solution gives the desired solution. Quite often a certain condition is r pt applicable. In such cases, the most general solution is written as the sum of the particular solutions alrea ly found and the constants are determined using Fourier series so as to satisfy the remaining conditions.

18.4 VIBRATIONS OF A STRETCHED STRING-WAVE EQUATION

Consider a tightly stretched elastic string of length l and fixed ends A and B and subjected to consta ht tension T (Fig. 18.1). The tension T will be considered to be large as compared to the weight of the string so th ht the effects of gravity are negligible.

Let the string be released from rest and allowed to vibrate. We shall study the subsequent motion of the string, with no external forces acting on it, assuming that each point of the string makes small vibrations at right angles to the equilibrium position $A B$, of the string entirely in one plane.

Taking the end A as the origin, $A B$ as the x-axis and $A Y$ perpendicular to it as the y-axis; so that the motion takes place entirely in the $x y$-plane. Figure 18.1 shows the string in the

Fig. 18.1 position $A P B$ at time t. Consider the motion of the element $P Q$ of the string between its points $P(x, y)$ a d $Q(x+\delta x, y+\delta y)$, where the tangents make angles ψ and $\psi+\delta \psi$ with the x-axis. Clearly the element is movi g upwards with the acceleration $\partial^{2} y / \partial t^{2}$. Also the vertical component of the force acting on this element.

$$
=T \sin (\psi+\delta \psi)-T \sin \psi=T[\sin (\psi+\delta \psi)-\sin \psi]
$$

$$
=T[\tan (\psi+\delta \psi)-\tan \psi], \text { since } \psi \text { is small }=T\left[\left\{\frac{\partial y}{\partial x}\right\}_{x+\delta x}-\left\{\frac{\partial y}{\partial x}\right\}_{x}\right]
$$

If m be the mass per unit length of the string, then by Newton's second law of motion, we have

$$
m \delta x \cdot \frac{\partial^{2} y}{\partial t^{2}}=T\left[\left\{\frac{\partial y}{\partial x}\right\}_{x+\delta x}-\left\{\frac{\partial y}{\partial x}\right\}_{x}\right] \text { i.e., } \frac{\partial^{2} y}{\partial t^{2}}=\frac{T}{m}\left[\frac{\left\{\frac{\partial y}{\partial x}\right\}_{x+\delta x}-\left\{\frac{\partial y}{\partial x}\right\}_{x}}{\delta x}\right]
$$

Taking limits as $Q \rightarrow P$ i.e., $d x \rightarrow 0$, we have $\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}$, where $c^{2}=\frac{T}{m}$
This is the partial differential equation giving the transverse vibrations of the string. It is also called the one dimensional wave equation.
(2) Solution of the wave equation. Assume that a solution of (1) is of the form $z=X(x) T(t)$ where X is a function of x and T is a function of t only.

Then

$$
\begin{equation*}
\frac{\partial^{2} y}{\partial t^{2}}=X . T^{\prime \prime} \text { and } \frac{\partial^{2} y}{\partial x^{2}}=X^{\prime \prime}, T \tag{2}
\end{equation*}
$$

Substituting these in (1), we get $X T^{\prime \prime}=c^{2} X^{\prime \prime} T$ i.e., $\frac{X^{\prime \prime}}{X}=\frac{1}{c^{2}} \frac{T^{\prime \prime}}{T}$
Clearly the left side of (2) is a function of x only and the right side is a function of t only. Since x and t are independent variables, (2) can hold good if each side is equal to a constant k (say). Then (2) leads to the ordinary differential equations :

$$
\begin{equation*}
\frac{d^{2} X}{d x^{2}}-k X=0 \quad \ldots(3) \quad \text { and } \quad \frac{d^{2} T}{d t^{2}}-k c^{2} T=0 \tag{4}
\end{equation*}
$$

Solving (3) and (4), we get
(i) When k is positive and $=p^{2}$, say $X=c_{1} e^{p x}+c_{2} e^{-p x} ; T=c_{3} e^{c p t}+c_{4} e^{-c p t}$.
(ii) When k is negative and $=-p^{2}$ say $X=c_{5} \cos p x+c_{6} \sin p x ; T=c_{7} \cos c p t+c_{8} \sin c p t$.
(iii) When k is zero. $X=c_{9} x+c_{10} ; T=c_{11} t+c_{12}$.

Thus the various possible solutions of wave-equation (1) are

$$
\begin{align*}
& y=\left(c_{1} e^{p x x}+c_{2} e^{-p x}\right)\left(c_{3} e^{\tau p t}+c_{4} e^{-c p t}\right) \tag{5}\\
& y=\left(c_{5} \cos p x+c_{6} \sin p x\right)\left(c_{7} \cos c p t+c_{8} \sin c p t\right) \tag{6}\\
& y=\left(c_{9} x+c_{10}\right)\left(c_{11} t+c_{12}\right) \tag{7}
\end{align*}
$$

Of these three solutions, we have to choose that solution which is consistent with the physical nature of the problem. As we will be dealing with problems on vibrations, y must be a periodic function of x and t. Hence their solution must involve trigonometric terms. Accordingly the solution given by (6), i.e., of the form

$$
\begin{equation*}
y=\left(C_{1} \cos p x+C_{2} \sin p x\right)\left(C_{3} \cos c p t+C_{4} \sin c p t\right) \tag{8}
\end{equation*}
$$

is the only suitable solution of one dimensional wave equation.

Fxample 18.3. A string is stretched and fastened to two points 1 apart. Motion is started by displaci the string in the form $y=a \sin (\pi x / l)$ from which it is released at time $t=0$. Show that the displacement of a point at a distance x from one end at time t is given by
$y(x, t)=a \sin (\pi x / l) \cos (\pi c t / l) . \quad(V . T . U ., 2010 ; S . V . T . U, 2008 ;$ Kerala, 2005; U.P.T.U., 20 .
4)

Solution. The vibration of the string is given by $\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}$
As the end points of the string are fixed, for all time,

$$
y(0, t)=0 \quad \ldots(i i) \quad \text { and } \quad y(l, t)=0
$$

Since the initial transverse velocity of any point of the string is zero,
therefore,

$$
\left(\frac{\partial y}{\partial t}\right)_{t=0}=0
$$

Also

$$
y(x, 0)=a \sin (\pi x / l)
$$

Now we have to solve (i) subject to the boundary conditions (ii) and (iii) and initial conditions (iv) and Since the vibration of the string is periodic, therefore, the solution of (i) is of the form

$$
y(x, t)=\left(C_{1} \cos p x+C_{2} \sin p x\right)\left(C_{3} \cos c p t+C_{4} \sin c p t\right)
$$

$$
y(0, t)=C_{1}\left(C_{3} \cos c p t+C_{4} \sin c p t\right)=0
$$

By (ii),
For this to be true for all time, $C_{1}=0$.
Hence

$$
y(x, t)=C_{2} \sin p x\left(C_{3} \cos c p t+C_{4} \sin c p t\right)
$$

and

$$
\frac{\partial y}{\partial t}=C_{2} \sin p x\left\{C_{3}(-c p \cdot \sin c p t)+C_{4}(c p \cdot \cos c p t)\right\}
$$

$$
\therefore \quad \text { By (iv), } \quad\left(\frac{\partial y}{\partial t}\right)_{t=0}=C_{2} \sin p x \cdot\left(C_{4} c p\right)=0, \text { whence } C_{2} C_{4} c p=0 \text {. }
$$

If $C_{2}=0$, (vii) will lead to the trivial solution $y(x, t)=0$,
$\therefore \quad$ the only possibility is that $C_{4}=0$.
Thus (vii) becomes $y(x, t)=C_{2} C_{3} \sin p x \cos c p t$
$\therefore \quad \mathrm{By}(i i i), \quad y(l, t)=C_{2} C_{3} \sin p l \cos c p t=0$ for all t.
Since C_{2} and $C_{3} \neq 0$, we have $\sin p l=0 . \quad \therefore \quad p l=n \pi$, i.e., $p=n \pi / l$, where n is an integer.
Hence (i) reduces to $\quad y(x, t)=C_{2} C_{3} \sin \frac{n \pi x}{l} \cos \frac{n \pi c t}{l}$.
[These are the solutions of (i) satisfying the boundary conditions. These functions are called the eigen functio is corresponding to the eigen values $\lambda_{n}=c n \pi / l$ of the vibrating string. The set of values $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots$ is called its spectrur - .

Finally, imposing the last condition (v), we have $y(x, 0)=C_{2} C_{3} \sin \frac{n \pi x}{l}=a \sin \frac{\pi x}{l}$ which will be satisfied by taking $C_{2} C_{3}=a$ and $n=1$.

Hence the required solution is $y(x, t)=a \sin \frac{\pi x}{l} \cos \frac{\pi c t}{l}$

Example 18.4. A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially in a position given by $y=y_{0} \sin ^{3}(\pi x / l)$. If it is released from rest from this position, find the displacement $y(x, t)$.

Solution. The equation of the vibrating string is $\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}$
The boundary conditions are $y(0, t)=0, y(l, t)=0$
Also the initial conditions are $y(x, 0)=y_{0} \sin ^{3}\left(\frac{\pi x}{l}\right)$
and

$$
\left(\frac{\partial y}{\partial t}\right)_{t=0}=0
$$

Since the vibration of the string is periodic, therefore, the solution of (i) is of the form

$$
y(x, t)=\left(c_{1} \cos p x+c_{2} \sin p x\right)\left(c_{3} \cos c p t+c_{4} \sin c p t\right)
$$

By (ii),

$$
y(0, t)=c_{1}\left(c_{3} \cos c p t+c_{4} \sin c p t\right)=0
$$

For this to be true for all time, $c_{1}=0$.
$\therefore \quad y(x, t)=c_{2} \sin p x\left(c_{3} \cos c p t+c_{4} \sin c p t\right)$
Also by (ii), $\quad y(l, t)=c_{2} \sin p l\left(c_{3} \cos c p t+c_{4} \sin c p t\right)=0$ for all t.
This gives $p l=n \pi$ or $p=n \pi / l, n$ being an integer.
Thus

$$
\begin{aligned}
y(x, t) & =c_{2} \sin \frac{n \pi x}{l}\left(c_{3} \cos \frac{c n \pi t}{l}+c_{4} \sin \frac{c n \pi t}{l}\right) \\
\frac{\partial y}{\partial t} & =\left(c_{2} \sin \frac{n \pi x}{l}\right) \frac{c n \pi}{l}\left(-c_{3} \sin \frac{c n \pi t}{l}+c_{4} \cos \frac{c n \pi t}{l}\right)
\end{aligned}
$$

$\quad \mathrm{By}(i v), \quad\left(\frac{\partial y}{\partial t}\right)_{t=0}=\left(c_{2} \sin \frac{n \pi x}{l}\right) \frac{c n \pi}{l}, c_{4}=0$, i.e. $c_{4}=0$.
Thus (v) becomes $y(x, t)=c_{2} c_{3} \sin \frac{n \pi x}{l} \cos \frac{n \pi c t}{l}=b_{n} \sin \frac{n \pi x}{l} \cos \frac{n \pi c t}{l}$
Adding all such solutions the general solution of (i) is

$$
\begin{equation*}
y(x, t)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} \cos \frac{n \pi c t}{l} \tag{vi}
\end{equation*}
$$

\therefore from (iii),

$$
y_{0} \sin ^{3} \frac{\pi x}{l}=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l}
$$

or

$$
y_{0}\left\{\frac{3 \sin \frac{\pi x}{l}-\sin \frac{3 \pi x}{l}}{4}\right\}=b_{1} \sin \frac{\pi x}{l}+b_{2} \sin \frac{2 \pi x}{l}+b_{3} \sin \frac{3 \pi x}{l}+\ldots
$$

Comparing both sides, we have

$$
b_{1}=3 y_{0} / 4, b_{2}=0, b_{3}=-y_{0} / 4, b_{4}=b_{5}=\ldots=0
$$

Hence from (vi), the desired solution is

$$
y(x, t)=\frac{3 y_{0}}{4} \sin \frac{\pi x}{l} \cos \frac{\pi c t}{l}-\frac{y_{0}}{4} \sin \frac{3 \pi x}{l} \cos \frac{3 \pi c t}{l}
$$

Example 18.5. A tightly stretched flexible string has its ends fixed at $x=0$ and $x=2$. At time $t=0$, the string is given a shape defined by $F(x)=\mu x(l-x)$, where μ is a constant, and then released. Find the displacement of any point x of the string at any time $t>0$.
(Bhopal, 2008 ; Madras, 2006 ; J.N.T.U., 2005 ; P.T.U., 2005)
Solution. The equation of the string is $\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}$
The boundary conditions are $y(0, t)=0, y(l, t)=0$
Also the initial conditions are $y(x, 0)=\mu x(l-x)$
and

$$
\begin{equation*}
\left(\frac{\partial y}{\partial t}\right)_{t=0}=0 \tag{iii}
\end{equation*}
$$

The solution of (i) is of the form

$$
\begin{aligned}
& y(x, t)=\left(c_{1} \cos p x+c_{2} \sin p x\right)\left(c_{3} \cos c p t+c_{4} \sin c p t\right) \\
& y(0, t)=c_{1}\left(c_{3} \cos c p t+c_{4} \sin c p t\right)=0
\end{aligned}
$$

By (ii),

$$
\text { all time, } c_{1}=0 \text {. }
$$

$\therefore \quad y(x, t)=c_{2} \sin p x\left(c_{3} \cos c p t+c_{4} \sin c p t\right)$
Also by (ii) $\quad y(l, t)=c_{2} \sin p l\left(c_{3} \cos c p t+c_{4} \sin c p t\right)=0$ for all t.
This gives $p l=n \pi$ or $p=n \pi l l, n$ being an integer.
Thus

$$
\begin{equation*}
y(x, t)=c_{2} \sin \frac{n \pi x}{l}\left(c_{3} \cos \frac{n \pi c t}{l}+c_{4} \sin \frac{n \pi c t}{l}\right) \tag{v}
\end{equation*}
$$

$$
\frac{\partial y}{\partial t}=\left(c_{2} \sin \frac{n \pi x}{l}\right) \frac{n \pi c}{l}\left(-c_{3} \sin \frac{n \pi c t}{l}+c_{4} \cos \frac{n \pi c t}{l}\right)
$$

\therefore by (iv)

$$
\left(\frac{\partial y}{\partial t}\right)_{t=0}=\left(c_{2} \sin \frac{n \pi x}{l}\right) \frac{n \pi c}{l} \cdot c_{4}=0
$$

Thus (v) becomes

$$
y(x, t)=c_{2} c_{3} \sin \frac{n \pi x}{l} \cos \frac{n \pi c t}{l}=b_{n} \sin \frac{n \pi x}{l} \cos \frac{n \pi c t}{l}
$$

Adding all such solutions, the general solution of (i) is

$$
\begin{equation*}
y(x, t)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} \cos \frac{n \pi c t}{l} \tag{vi}
\end{equation*}
$$

From (iii), $\quad \mu\left(l x-x^{2}\right)=y(x, 0)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l}$
where

$$
\begin{aligned}
b_{n} & =\frac{2}{l} \int_{0}^{l} \mu\left(l x-x^{2}\right) \sin \frac{n \pi x}{l} d x, \text { by Fourier half-range sine series } \\
& =\frac{2 \mu}{l}\left\{\left(\left.\left(l x-x^{2}\right)\left(-\frac{\cos n \pi x / l}{n \pi / l}\right)\right|_{0} ^{l}-\int_{0}^{l}(l-2 x)\left(-\frac{\cos n \pi x / l}{n \pi / l}\right) d x\right\}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2 \mu}{l} \cdot \frac{1}{n \pi}\left\{\int_{0}^{l}(l-2 x) \frac{\cos n \pi x}{l} d x\right\}=\frac{2 \mu}{n \pi}\left\{\left.\int(l-2 x) \frac{\sin n \pi x / l}{n \pi / l}\right|_{0} ^{l}-\int_{0}^{l}(-2) \frac{\sin n \pi x / l}{n \pi l l} d x\right\} \\
& =\frac{2 \mu}{n \pi} \cdot \frac{2 l}{n \pi} \int_{0}^{l} \sin \frac{n \pi x}{l} d x=\frac{4 \mu l}{n^{2} \pi^{2}}\left|\frac{-\cos n \pi x / l}{n \pi / l}\right|_{0}^{l}=\frac{4 \mu l^{2}}{n^{3} \pi^{3}}\left\{1-(-1)^{n}\right\}
\end{aligned}
$$

Hence from (vi), the desired solution is

$$
\begin{aligned}
y(x, t) & =\frac{4 \mu l^{2}}{\pi^{3}} \sum_{n=1}^{\infty} \frac{1-(-1)^{n}}{n^{3}} \sin \frac{n \pi x}{l} \cos \frac{n \pi c t}{l} \\
& =\frac{8 \mu l^{2}}{\pi^{3}} \sum_{m=1}^{\infty} \frac{1}{(2 m-1)^{3}} \sin \frac{(2 m-1) \pi}{l} x \cos \frac{(2 m-1) \pi c t}{l} .
\end{aligned}
$$

Example 18.6. A tightly stretched string of length l with fixed ends is initially in equilibrium position. It is set vibrating by giving each point a velocity $v_{0} \sin ^{3} \pi x / l$. Find the displacement $y(x, t)$.

Solution. The equation of the vibrating string is $\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}$
The boundary conditions are $y(0, t)=0, y(l, t)=0$
Also the initial conditions are $y(x, 0)=0$
and

$$
\begin{equation*}
\left(\frac{\partial y}{\partial t}\right)_{t=0}=v_{0} \sin ^{3} \frac{\pi x}{l} \tag{iii}
\end{equation*}
$$

Since the vibration of the string is periodic, therefore, the solution of (i) is of the form

$$
y(x, t)=\left(c_{1} \cos p x+c_{2} \sin p x\right)\left(c_{3} \cos c p t+c_{4} \sin c p t\right)
$$

By (ii),

$$
y(0, t)=c_{1}\left(c_{3} \cos c p t+c_{4} \sin c p t\right)=0
$$

For this to be true for all time $c_{1}=0$.
$\therefore \quad y(x, t)=c_{2} \sin p x\left(c_{3} \cos c p t+c_{4} \sin c p t\right)$
Also $\quad y(l, t)=c_{2} \sin p l\left(c_{3} \cos c p t+c_{4} \sin c p t\right)=0$ for all t.
This gives

$$
p l=n \pi \quad \text { or } \quad p=\frac{n \pi}{l}, n \text { being an integer. }
$$

Thus

$$
y(x, t)=c_{2} \sin \frac{n \pi x}{l}\left(c_{3} \cos \frac{c n \pi}{l} t+c_{4} \sin \frac{c n \pi}{l} t\right)
$$

By (iii),

$$
0=c_{2} c_{3} \sin \frac{n \pi x}{l} \quad \text { for all } x \text { i.e., } c_{2} c_{3}=0
$$

$\therefore \quad y(x, t)=b_{n} \sin \frac{n \pi x}{l} \sin \frac{c n \pi t}{l} \quad$ where $b_{n}=c_{2} c_{4}$
Adding all such solutions, the general solution of (i) is

$$
\begin{equation*}
y(x, t)=\sum b_{n} \sin \frac{n \pi x}{l} \sin \frac{c n \pi t}{l} \tag{v}
\end{equation*}
$$

Now

$$
\frac{\partial y}{\partial t}=\sum b_{n} \sin \frac{n \pi x}{l}, \frac{c n \pi}{l} \cos \frac{c n \pi t}{l}
$$

$\mathrm{By}(i v), \quad v_{0} \sin ^{3} \frac{\pi x}{l}=\left(\frac{\partial y}{\partial t}\right)_{t=0}=\sum \frac{c n \pi}{l} b_{n} \sin \frac{n \pi x}{l}$

$$
\begin{gathered}
\frac{v_{0}}{4}\left(3 \sin \frac{\pi x}{l}-\sin \frac{3 \pi x}{l}\right)=\sum \frac{c n \pi}{l} b_{n} \sin \frac{n \pi x}{l} \quad\left[\because \sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta\right] \\
\quad=\frac{c \pi}{l} b_{1} \sin \frac{\pi x}{l}+\frac{2 c \pi}{l} b_{2} \sin \frac{2 \pi x}{l}+\frac{3 c \pi}{l} b_{3} \sin \frac{3 \pi x}{l}+\ldots
\end{gathered}
$$

Equating coefficients from both sides, we get

$$
\begin{array}{lll}
& \frac{3 v_{0}}{4}=\frac{c \pi}{l} b_{1}, \quad 0=\frac{2 c \pi}{l} b_{2}, \quad-\frac{v_{0}}{4}=\frac{3 c \pi}{l} b_{3}, \ldots \\
\therefore & b_{1}=\frac{3 l v_{0}}{4 c \pi}, \quad b_{3}=-\frac{l v_{0}}{12 c \pi}, \quad b_{2}=b_{4}=b_{3}=\ldots=0
\end{array}
$$

Substituting in (v), the desired solution is

$$
y=\frac{l v_{0}}{12 c \pi}\left(9 \sin \frac{\pi x}{l} \sin \frac{c \pi t}{l}-\sin \frac{3 \pi x}{l} \sin \frac{3 c \pi t}{l}\right) .
$$

Example 18.7. A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially at rest in its equilibrium position. If it is vibrating by giving to each of its points a velocity $\lambda \times(\Omega-x)$, find the displacement of the string at any distance x from one end at any time t.

Solution. The equation of the vibrating string is $\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}$
The boundary conditions are $\quad y(0, t)=0, y(l, t)=0$
Also the initial conditions are $y(x, 0)=0$ and

$$
\begin{equation*}
\left(\frac{\partial y}{\partial t}\right)_{t=0}=\lambda x(l-x) \tag{ii}
\end{equation*}
$$

As in example 18.6, the general solution of (i) satisfying the conditions (ii) and (iii) is

$$
\begin{align*}
y(x, t) & =\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} \cdot \sin \frac{n \pi c t}{l} \tag{v}\\
\frac{\partial y}{\partial t} & =\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} \cdot \cos \frac{n \pi c t}{l} \cdot\left(\frac{n \pi c}{l}\right)
\end{align*}
$$

By (iv),

$$
\lambda x(l-x)=\left(\frac{\partial y}{\partial t}\right)_{t=0}=\frac{\pi c}{l} \sum_{n=1}^{\infty} n b_{n} \sin \frac{n \pi x}{l}
$$

$\therefore \quad \frac{\pi c}{l} n b_{n}=\frac{2}{l} \int_{0}^{l} \lambda x(l-x) \sin \frac{n \pi x}{l} d x$

$$
=\frac{2 \lambda}{l}\left|\left(l x-x^{2}\right)\left(-\frac{l}{n \pi} \cos \frac{n \pi x}{l}\right)-(l-2 x)\left(-\frac{l^{2}}{n^{2} \pi^{2}} \sin \frac{n \pi x}{l}\right)+(-2)\left(\frac{l^{3}}{n^{3} \pi^{3}} \cos \frac{n \pi x}{l}\right)\right|_{0}^{l}
$$

$$
=\frac{4 \lambda l^{2}}{n^{3} \pi^{3}}(1-\cos n \pi)=\frac{4 \lambda l^{2}}{n^{3} \pi^{3}}\left[1-(-1)^{n}\right]
$$

or

$$
b_{n}=\frac{4 \lambda l^{3}}{c \pi^{4} n^{4}}\left[1-(-1)^{n}\right]=\frac{8 \lambda l^{3}}{c \pi^{4}(2 m-1)^{4}} \text { taking } n=2 m-1 .
$$

Hence, from (v), the desired solution is

$$
y=\frac{8 l^{3}}{c \pi^{4}} \sum_{m=1}^{\infty} \frac{1}{(2 m-1)^{4}} \sin \frac{(2 m-1) \pi x}{l} \sin \frac{(2 m-1) \pi c t}{l} .
$$

Example 18.8. The points of trisection of a string are pulled aside through the same distance on opposite sides of the position of equilibrium and the string is released from rest. Derive an expression for the displacement of the string at subsequent time and show that the mid-point of the string always remains at rest.

Solution. Let B and C be the points of the trisection of the string $O A(=l)$ (Fig. 18.2). Initially the string is held in the form $O B^{\prime} C^{\prime} A$, where $B B^{\prime}=C C^{\prime}=a$ (say).
the asplacement $y(x, t)$ of any point of the string is given oy

$$
\begin{equation*}
\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}} \tag{i}
\end{equation*}
$$

and the boundary conditions are

$$
\begin{align*}
y(0, t) & =0 \tag{ii}\\
y(l, t) & =0 \tag{iii}\\
\left(\frac{\partial y}{\partial t}\right)_{t=0} & =0 \tag{iv}
\end{align*}
$$

The remaining condition is that at $t=0$, the string rests in the form

Fig. 18.2 of the broken line $O B^{\prime} C^{\prime} A$. The equation of $O B^{\prime}$ is $y=(3 a / l) x$;
the equation of $B^{\prime} C^{\prime}$ is

$$
\begin{aligned}
y-a & =\frac{-2 a}{(l / 3)}\left(x-\frac{l}{3}\right), \text { i.e.. } y=\frac{3 a}{l}(l-2 x) \\
y & =\frac{3 a}{l}(x-l)
\end{aligned}
$$

and the equation of $C^{\prime} A$ is
Hence the fourth boundary condition is

$$
\left.\begin{array}{rl}
y(x, 0) & =\frac{3 a}{l} x, 0 \leq x \leq \frac{l}{3} \\
& =\frac{3 a}{l}(l-2 x), \frac{l}{3} \leq x \leq \frac{2 l}{3} \tag{v}\\
& =\frac{3 a}{l}(x-l), \frac{2 l}{3} \leq x \leq l
\end{array}\right\}
$$

As in example 18.6, the solution of (i) satisfying the boundary conditions (ii), (iii) and (iv), is

$$
y(x, t)=b_{n} \sin \frac{n \pi x}{l} \cos \frac{n \pi c t}{l}
$$

Adding all such solutions, the most general solution of (i) is

$$
\begin{equation*}
y(x, t)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} \cos \frac{n \pi c t}{l} \tag{vi}
\end{equation*}
$$

Putting $t=0$, we have $y(x, 0)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l}$

In order that the condition (v) may be satisfied, (v) and (vii) must be same. This requires the expansion of $y(x, 0)$ into a Fourier half-range sine series in the interval $(0, l)$.
\therefore by (1) of $\& 10.7$,

$$
=\frac{6 a}{l^{2}} \cdot \frac{3 l^{2}}{n^{2} \pi^{2}}\left(\sin \frac{n \pi}{3}-\sin \frac{2 n \pi}{3}\right)
$$

$$
=\frac{18 a}{n^{2} \pi^{2}} \sin \frac{n \pi}{3}\left[1+(-1)^{n}\right]
$$

$$
\left[\because \sin \frac{2 n \pi}{3}=\sin \left(n \pi-\frac{n \pi}{3}\right)=-(-1)^{n} \sin \frac{n \pi}{3}\right]
$$

Thus $b_{n}=0$, when n is odd.

$$
=\frac{36 a}{n^{2} \pi^{2}} \sin \frac{n \pi}{3}, \text { when } n \text { is even. }
$$

Hence (vi) gives

$$
\begin{align*}
y(x, t) & =\sum_{n=2,4, \ldots}^{\infty} \frac{36 a}{n^{2} \pi^{2}} \sin \frac{n \pi}{3} \sin \frac{n \pi x}{l} \cos \frac{n \pi c t}{l} \\
& =\frac{9 a}{\pi^{2}} \sum_{m=1}^{\infty} \frac{1}{m^{2}} \sin \frac{2 m \pi}{3} \sin \frac{2 m \pi x}{l} \cos \frac{2 m \pi c t}{l} \tag{vii}
\end{align*}
$$

Putting $x=l / 2$ in (vii), we find that the displacement of the mid-point of the string, i.e. $y(l / 2, t)=0$, because $\sin m \pi=0$ for all integral values of m.

This shows that the mid-point of the string is always at rest.

$$
\begin{aligned}
& b_{n}=\frac{2}{l}\left[\int_{0}^{l / 3} \frac{3 a x}{l} \sin \frac{n \pi x}{l} d x+\int_{l / 3}^{2 / 3} \frac{3 a}{l}(l-2 x) \sin \frac{n \pi x}{l} d x+\int_{2 / 3}^{l} \frac{3 a}{l}(x-l) \sin \frac{n \pi x}{l} d x\right] \\
& =\frac{6 a}{l^{2}}\left[\left|x\left\{-\frac{\cos (n \pi x / l)}{(n \pi l)}\right\}-1\left\{-\frac{\sin (n \pi x / l)}{(n \pi l)^{2}}\right\}\right|_{0}^{l / 3}\right. \\
& +\left|(l-2 x)\left\{-\frac{\cos (n \pi x / l)}{(n \pi / l)}\right\}-(-2)\left\{\frac{\sin (n \pi x / l)}{(n \pi l)^{2}}\right\}\right|_{/ / 3}^{2 / 3} \\
& \left.+\left|(x-l)\left\{-\frac{\cos (n \pi x / l)}{(n \pi / l)}\right\}-(1) \cdot\left\{-\frac{\sin (n \pi x / l)}{(n \pi / l)^{2}}\right\}\right|_{2 / 3}^{l}\right] \\
& =\frac{6 a}{l^{2}}\left[\left(-\frac{l^{2}}{3 n \pi} \cos \frac{n \pi}{3}+\frac{l^{2}}{n^{2} \pi^{2}} \sin \frac{n \pi}{3}\right)+\frac{l^{2}}{3 n \pi} \cos \frac{2 n \pi}{3}-\frac{2 l^{2}}{n^{2} \pi^{2}} \sin \frac{2 n \pi}{3}+\frac{l^{2}}{3 n \pi} \cos \frac{n \pi}{3}\right. \\
& \left.+\frac{2 l^{2}}{n^{2} \pi^{2}} \sin \frac{n \pi}{3}-\left(\frac{l^{2}}{3 n \pi} \cos \frac{2 n \pi}{3}+\frac{l^{2}}{n^{2} \pi^{2}} \sin \frac{2 n \pi}{3}\right)\right]
\end{aligned}
$$

(3) D'Alembert's solution of the wave equation

$$
\begin{equation*}
\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}} \tag{1}
\end{equation*}
$$

Let us introduce the new independent variables $u=x+c t, v=x-c t$ so that y becomes a function of u and v. Then $\frac{\partial y}{\partial x}=\frac{\partial y}{\partial u}+\frac{\partial y}{\partial v}$
and

$$
\frac{\partial^{2} y}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial y}{\partial u}+\frac{\partial y}{\partial v}\right)=\frac{\partial}{\partial u}\left(\frac{\partial y}{\partial u}+\frac{\partial y}{\partial v}\right)+\frac{\partial}{\partial v}\left(\frac{\partial y}{\partial u}+\frac{\partial y}{\partial v}\right)=\frac{\partial^{2} y}{\partial u^{2}}+2 \frac{\partial^{2} y}{\partial u \partial v}+\frac{\partial^{2} y}{\partial v^{2}}
$$

Similarly,

$$
\begin{equation*}
\frac{\partial^{2} y}{\partial t^{2}}=c^{2}\left(\frac{\partial^{2} y}{\partial u^{2}}-2 \frac{\partial^{2} y}{\partial u \partial v}+\frac{\partial^{2} y}{\partial v^{2}}\right) \tag{2}
\end{equation*}
$$

Substituting in (1), we get $\frac{\partial^{2} y}{\partial u \partial v}=0$
Integrating (2) w.r.t. v, we get $\frac{\partial y}{\partial u}=f(u)$
where $f(u)$ is an arbitrary function of u. Now integrating (3) w.r.t. u, we obtain

$$
y=\int f(u) d u+\psi(v)
$$

where $\psi(v)$ is an arbitrary function of v. Since the integral is a function of u alone, we may denote it by $\phi(u)$. Thus

$$
y=\phi(u)+\psi(v)
$$

i.e.

$$
\begin{equation*}
y(x, t)=\phi(x+c t)+\psi(x-c t) \tag{4}
\end{equation*}
$$

This is the general solution of the wave equation (1).
Now to determine ϕ and ψ, suppose initially $u(x, 0)=f(x)$ and $\partial y(x, 0) / \partial t=0$.
Differentiating (4) w.r.t. t, we get $\frac{\partial y}{\partial t}=c \varphi^{\prime}(x+c t)-c \psi^{\prime}(x-c t)$
At $t=0$,

$$
\begin{equation*}
\phi^{\prime}(x)=\psi^{\prime}(x) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
y(x, 0)=\phi(x)+\psi(x)=f(x) \tag{6}
\end{equation*}
$$

(5) gives,

$$
\phi(x)=\psi(x)+k
$$

\therefore (6) becomes $2 \psi(x)+k=f(x)$
or

$$
\psi(x)=\frac{1}{2}[f(x)-k] \text { and } \phi(x)=\frac{1}{2}[f(x)+k]
$$

Hence the solution of (4) takes the form

$$
\begin{equation*}
y(x, t)=\frac{1}{2}[f(x+c t)+k]+\frac{1}{2}[f(x-c t)-k]=f(x+c t)+f(x-c t) \tag{7}
\end{equation*}
$$

which is the d'Alembert's solution* of the wave equation (1)
(V.T.U., 2011 S)

Example 18.9. Find the deflection of a vibrating string of unit length having fixed ends with initial velocity zero and initial deflection $f(x)=k(\sin x-\sin 2 x)$.

Solution. By d'Alembert's method, the solution is

$$
\begin{aligned}
y(x, t) & =\frac{1}{2}[f(x+c t)+f(x-c t)] \\
& =\frac{1}{2}[k\{\sin (x+c t)-\sin 2(x+c t)\}+k[\sin (x-c t)-\sin 2(x-c t)]] \\
& =k[\sin x \cos c t-\sin 2 x \cos 2 c t]
\end{aligned}
$$

Also

$$
y(x, 0)=k(\sin x-\sin 2 x)=f(x)
$$

and

$$
\partial y(x, 0) / \partial t=k(-c \sin x \sin c t+2 c \sin 2 x \sin 2 c t)_{t=0}=0
$$

i.e., the given boundary conditions are satisfied.

18.5 (1) ONE-DIMENSIONAL HEAT FLOW

Consider a homogeneous bar of uniform cross-section $\alpha\left(\mathrm{cm}^{2}\right)$. Suppose that the sides are covered with a material impervious to heat so that the stream lines of heat-flow are all parallel and perpendicular to the area α. Take one end of the bar as the origin and the direction of flow as the positive x-axis (Fig. 18.3). Let ρ be the density (gr/cm ${ }^{3}$), s the specific heat ($\mathrm{cal} . / \mathrm{gr}$. deg.) and k the thermal conductivity (cal./cm. deg. sec.).

Let $u(x,-t)$ be the temperature at a distance x from O. If δu be the temperature change in a slab of thickness δx of the bar, then by $\S 12.7$ (ii) p. 466, the quantity of heat in this slab $=s \rho \alpha \delta x \delta u$. Hence the rate of increase of heat in this slab, i.e., $\operatorname{sp\alpha } \delta x \frac{\partial u}{\partial t}=R_{1}-R_{2}$, where R_{1} and R_{2} are respectively the rate ($\mathrm{cal} / \mathrm{sec}$.) of inflow and outflow of heat.

Fig. 18.3

Now by (A) of p. 466, $R_{1}=-k \alpha\left(\frac{\partial u}{\partial x}\right)_{x}$ and $R_{2}=-k \alpha\left(\frac{\partial u}{\partial x}\right)_{x+\delta x}$
the negative sign appearing as a result of (i) on p. 466.
Hence $\operatorname{sp\alpha } \delta x \frac{\partial u}{\partial t}=-k \alpha\left(\frac{\partial u}{\partial x}\right)_{x}+k \alpha\left(\frac{\partial u}{\partial x}\right)_{x+\delta x}$ i.e., $\frac{\partial u}{\partial t}=\frac{k}{s \rho}\left\{\frac{(\partial u / \partial x)_{x+\delta x}-(\partial u / \partial x)_{x}}{\delta x}\right\}$
Writing $k / s \rho=c^{2}$, called the diffusivity of the substance ($\mathrm{cm}^{2} / \mathrm{sec}$.), and taking the limit as $\delta x \rightarrow 0$, we get

$$
\begin{equation*}
\frac{\partial \mathbf{u}}{\partial \mathbf{t}}=\mathbf{c}^{2} \frac{\partial^{2} \mathbf{u}}{\partial \mathbf{x}^{2}} \tag{1}
\end{equation*}
$$

This is the one-dimensional heat-flow equation.
(V.T.U., 2011)
(2) Solution of the heat equation. Assume that a solution of (1) is of the form

$$
u(x, t)=X(x) . T(t)
$$

where X is a function of x alone and T is a function of t only.
Substituting this in (1), we get

$$
\begin{equation*}
X T^{\prime}=c^{2} X^{\prime \prime \prime} T \text {, i.e., } X^{\prime \prime} / X=T^{\prime} / c^{2} T \tag{2}
\end{equation*}
$$

Clearly the left side of (2) is a function of x only and the right side is a function of t alone. Since x and t are independent variables, (2) can hold good if each side is equal to a constant k (say). Then (2) leads to the ordinary differential equations

$$
\begin{equation*}
\frac{d^{2} X}{d x^{2}}-k X=0 \quad \ldots(3) \quad \text { and } \quad \frac{d T}{d t}-k c^{2} T=0 \tag{4}
\end{equation*}
$$

Solving (3) and (4), we get
(i) When k is positive and $=p^{2}$, say :

$$
X=c_{1} e^{p x}+c_{2} e^{-p x}, T=c_{3} e^{e^{2} p^{2} t} ;
$$

(ii) When k is negative and $=-p^{2}$, say :

$$
X=c_{4} \cos p x+c_{5} \sin p x, T=c_{6} e^{-c^{2} p^{2} t} ;
$$

(iii) When k is zero:

$$
X=c_{7} x+c_{8}, T=c_{9} .
$$

Thus the various possible solutions of the heat-equation (1) are

$$
\begin{align*}
& u=\left(c_{1} e^{p x}+c_{2} e^{-p x}\right) c_{3} e^{e^{2} p^{2} t} \tag{5}\\
& u=\left(c_{4} \cos p x+c_{5} \sin p x\right) c_{6} e^{-c^{2} p^{2} t} \tag{6}\\
& u=\left(c_{7} x+c_{8}\right) c_{9} \tag{7}
\end{align*}
$$

Of these three solutions, we have to choose that solution which is consistent with the physical nature of the problem. As we are dealing with problems on heat conduction, it must be a transient solution, i.e., u is to decrease with the increase of time t. Accordingly, the solution given by (6), i.e., of the form

$$
\begin{equation*}
u=\left(C_{1} \cos p x+C_{2} \sin p x\right) e^{-c^{2} p^{2} t} \tag{8}
\end{equation*}
$$

is the only suitable solution of the heat equation.

Example 18.10. Solve the equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ with boundary conditions $u(x, 0)=3 \sin n \pi x, u(0, t)=0$ and $u(1, t)=0$, where $0<x<1, t>0$.

Solution. The solution of the equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$
is
When $x=0$,

$$
u(x, t)=\left(c_{1} \cos p x+c_{2} \sin p x\right) e^{-p^{2} t}
$$

\therefore (ii) becomes

$$
\begin{equation*}
u(0, t)=c_{1} e^{-p^{2} t}=0 \quad \text { i.e., } \quad c_{1}=0 \tag{ii}
\end{equation*}
$$

When $x=1$, i.e,

$$
u(x, t)=c_{2} \sin p x e^{-p^{2} t}
$$

,

$$
\begin{aligned}
u(1, t) & =c_{2} \sin p \cdot e^{-p^{2} t}=0 \text { or } \sin p=0 \\
p & =n \pi .
\end{aligned}
$$

\therefore (iii) reduces to

$$
\begin{equation*}
u(x, t)=b_{n} e^{-(n \pi)^{2} t} \sin n \pi x \text { where } b_{n}=c_{2} \tag{iv}
\end{equation*}
$$

Thus the general solution of (i) is $u(x, t)=\sum b_{n} e^{-n^{2} \pi^{2} t} \sin n \pi x$
When $t=0,3 \sin n \pi x=u(0, t)=\sum_{n=1}^{\infty} b_{n} e^{-n^{2} \pi^{3} t} \sin n \pi x$
Comparing both sides, $b_{n}=3$
Hence from (iv), the desired solution is

$$
u(x, t)=3 \sum_{n=1}^{\infty} e^{-n^{2} \pi^{2} t} \sin n \pi x .
$$

Example 18,11. Solve the differential equation $\frac{\partial u}{\partial t}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}$ for the conduction of heat along a rod without radiation, subject to the following conditions :
(i) u is not infinite for $t \rightarrow \infty$, (ii) $\frac{\partial u}{\partial x}=0$ for $x=0$ and $x=l$,
(ii) $u=L x-x^{2}$ for $t=0$, between $x=0$ and $x=l$.

Solution. Substituting $u=X(x) T(t)$ in the given equation, we get

$$
\begin{array}{ll}
& X T^{\prime \prime}=\alpha^{2} X^{\prime \prime} T \text { i.e., } X^{\prime \prime} \left\lvert\, X=\frac{T^{\prime}}{\alpha^{2} T}=-k^{2}\right. \text { (say) } \\
\therefore \quad & \frac{d^{2} X}{d x^{2}}+k^{2} X=0 \text { and } \frac{d T}{d t}+k^{2} \alpha^{2} T=0 \tag{1}
\end{array}
$$

Their solutions are

$$
\begin{equation*}
X=c_{1} \cos k x+c_{2} \sin k x, T=c_{3} e^{-k^{2} \alpha^{2} t} \tag{2}
\end{equation*}
$$

If k^{2} is changed to $-k^{2}$, the solutions are

$$
\begin{align*}
& X=c_{4} e^{k x}+c_{5} e^{-k x}, T=c_{6} e^{k^{2} \alpha^{2} t} \tag{3}\\
& X=c_{7} x+c_{8}, T=c_{9} \tag{4}
\end{align*}
$$

If $k^{2}=0$, the solutions are
In (3), $T \rightarrow \infty$ for $t \rightarrow \infty$ therefore, u also $\rightarrow \infty$ i.e., the given condition (i) is not satisfied. So we reject the solutions (3) while (2) and (4), satisfy this condition.

Applying the condition (ii) to (4), we get $c_{7}=0$.
$\therefore \quad u=X T=c_{8} c_{9}=a_{0} \quad$ (say)
From (2),

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\left(-c_{1} \sin k x+c_{2} \cos k x\right) k c_{3} e^{-k^{2} \alpha^{2} t} \tag{5}
\end{equation*}
$$

Applying the condition (ii), we get $c_{2}=0$ and $-c_{1} \sin k l+c_{2} \cos k l=0$
i.e.,

$$
c_{2}=0 \text { and } k l=n \pi(n \text { an integer })
$$

$$
\begin{equation*}
\therefore \quad u=c_{1} \cos k x \cdot c_{3} e^{-k^{2} \alpha^{2} t}=a_{n} \cos \left(\frac{n \pi x}{l}\right) \frac{e^{-n^{2} \pi^{2} \alpha^{2} t}}{l^{2}} \tag{6}
\end{equation*}
$$

Thus the general solution being the sum of (5) and (6), is

$$
u=a_{0}+\Sigma a_{n} \cos (n \pi x / l) e^{-n^{2} \pi^{2} \alpha^{2} t / l^{2}}
$$

Now using the condition (iii), we get

$$
l x-x^{2}=a_{0}+\Sigma a_{n} \cos (n \pi x / l)
$$

This being the expansion of $l x-x^{2}$ as a half-range cosine series in ($0, l$), we get
and

$$
\begin{aligned}
a_{0} & =\frac{1}{l} \int_{0}^{l}\left(l x-x^{2}\right) d x=\frac{1}{l}\left|\frac{l x^{2}}{2}-\frac{x^{3}}{3}\right|_{0}^{l}=\frac{l^{2}}{6} \\
a_{n} & \left.=\frac{2}{l} \int_{0}^{l}\left(l x-x^{2}\right) \cos \frac{n \pi x}{l} d x=\frac{2}{l} \right\rvert\,\left(l x-x^{2}\right)\left(\frac{l}{n \pi} \sin \frac{n \pi x}{l}\right) \\
& -(l-2 x)\left(-\frac{l^{2}}{n^{2} \pi^{2}} \cos \frac{n \pi x}{l}\right)+\left.(-2)\left(-\frac{l^{3}}{n^{3} \pi^{3}} \sin \frac{n \pi x}{l}\right)\right|_{0} ^{l} \\
& =\frac{2}{l}\left\{0-\frac{l^{3}}{n^{2} \pi^{2}}(\cos n \pi+1)+0\right\}=-\frac{4 l^{2}}{n^{2} \pi^{2}} \text { when } n \text { is even, otherwise } 0 .
\end{aligned}
$$

Hence taking $n=2 m$, the required solution is

$$
u=\frac{l^{2}}{6}-\frac{l^{2}}{\pi^{2}} \sum_{m=1}^{\infty} \frac{1}{m^{2}} \cos \left(\frac{2 m \pi x}{l}\right) e^{-4 m^{2} \pi^{2} \alpha^{2} t / l^{2}}
$$

Example 18.12. (a) An insulated rod of length l has its ends A and B maintained at $0^{\circ} \mathrm{C}$ and 1 respectively until steady state conditions prevail. If B is suddenly reduced to $0^{\circ} \mathrm{C}$ and maintained at $0^{\circ} \mathrm{C}$, the temperature at a distance x from A at time t.
(b) Solve the above problem if the change consists of raising the temperature of A to $20^{\circ} \mathrm{C}$ and redu

Prior to the temperature change at the end B, when $t=0$, the heat flow was independent of time (steady state condition). When u depends only on x, (i) reduces to $\partial^{2} u / \partial x^{2}=0$.

Its general solution is $u=a x+b$
Since $u=0$ for $x=0$ and $u=100$ for $x=l$, therefore, (ii) gives $b=0$ and $a=100 / l$.
Thus the initial condition is expressed by $u(x, 0)=\frac{100}{l} x$
Also the boundary conditions for the subsequent flow are

$$
\begin{equation*}
u(0, t)=0 \text { for all values of } t \tag{iv}
\end{equation*}
$$

and

$$
\begin{equation*}
u(l, t)=0 \text { for all values of } t \tag{v}
\end{equation*}
$$

Thus we have to find a temperature function $u(x, t)$ satisfying the differential equation (i) subject to the initial condition (iii) and the boundary conditions (iv) and (v).

Now the solution of (i) is of the form

$$
\begin{equation*}
u(x, t)=\left(C_{1} \cos p x+C_{2} \sin p x\right) e^{-c^{2} p^{2} t} \tag{vi}
\end{equation*}
$$

By (iv), $\quad u(0, t)=C_{1} e^{-c^{2} p^{2} t}=0$, for all values of t.
Hence $C_{1}=0$ and (vi) reduces to $u(x, t)=C_{2} \sin p x \cdot e^{-c^{2} p^{2} t}$
Applying (v), (vii) gives $u(l, t)=C_{2} \sin p l \cdot e^{-c^{2} p^{2} t}=0$, for all values of t.
This requires $\sin p l=0$ i.e., $p l=n \pi$ as $C_{2} \neq 0 . \quad \therefore \quad p=n \pi l l$, where n is any integer.
Hence (vii) reduces to $u(x, t)=b_{n} \sin \frac{n \pi x}{l} \cdot e^{-c^{2} n^{2} \pi^{2} t / l^{2}}$, where $b_{n}=C_{2}$.
[These are the solutions of (i) satisfying the boundary conditions (iv) and (v). These are the eigen functions corresponding to the eigen values $\lambda_{n}=c n \pi / l$, of the problem.]

Adding all such solutions, the most general solution of (i) satisfying the boundary conditions (iv) and (v) is

$$
\begin{align*}
& u(x, t)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} \cdot e^{-c^{2} n^{2} \pi^{2} t / l^{2}} \tag{viii}\\
& \text { Putting } t=0, \quad u(x, 0)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} \tag{ix}
\end{align*}
$$

In order that the condition (iii) may be satisfied, (iii) and (ix) must be same. This requires the expansion of $100 x / l$ as a half-range Fourier sine series in $(0, l)$. Thus

$$
\begin{aligned}
\frac{100 x}{l} & =\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} \text { where } b_{n}=\frac{2}{l} \int_{0}^{l} \frac{100 x}{l} \cdot \sin \frac{n \pi x}{l} d x \\
& =\frac{200}{l^{2}}\left[x\left\{-\frac{\cos (n \pi x / l)}{(n \pi / l)}\right\}-(1)\left\{-\frac{\sin (n \pi x / l)}{(n \pi / l)^{2}}\right\}\right]_{0}^{l}=\frac{200}{l^{2}}\left(-\frac{l^{2}}{n \pi} \cos n \pi\right)=\frac{200}{n \pi}(-1)^{n+1}
\end{aligned}
$$

Hence (viii) gives $u(x, t)=\frac{200}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \frac{n \pi x}{l} \cdot e^{-(c n \pi / l)^{2} t}$
(b) Here the initial condition remains the same as (iii) above, and the boundary conditions are

$$
\begin{align*}
u(0, t) & =20 \text { for all values of } t \tag{x}\\
u(l, t) & =80 \text { for all values of } t
\end{align*}
$$

In part (a), the boundary values (i.e., the temperature at the ends) being zero, we were able to find the desired solution easily. Now the boundary values being non-zero, we have to modify the procedure.

We split up the temperature function $u(x, t)$ into two parts as

$$
\begin{equation*}
u(x, t)=u_{s}(x)+u_{t}(x, t) \tag{xii}
\end{equation*}
$$

where $u_{s}(x)$ is a solution of (i) involving x only and satisfying the boundary conditions (x) and $(x i) ; u_{t}(x, t)$ is then a function defined by (xii). Thus $u_{s}(x)$ is a steady state solution of the form (ii) and $u_{t}(x, t)$ may be regarded as a transient part of the solution which decreases with increase of t.

Since $u_{s}(0)=20$ and $u_{s}(l)=80$, therefore, using (ii) we get

$$
u_{s}(x)=20+(60 / l) x
$$

Putting $x=0$ in (xii), we have by (x),

$$
\begin{equation*}
u_{t}(0, t)=u(0, t)-u_{s}(0)=20-20=0 \tag{xiv}
\end{equation*}
$$

Putting $x=l$ in ($x i i$), we have by ($x i$),

$$
\begin{equation*}
u_{t}(l, t)=u(l, t)-u_{s}(l)=80-80=0 \tag{xv}
\end{equation*}
$$

Also

$$
\begin{align*}
u_{t}(x, 0) & =u(x, 0)-u_{s}(x)=\frac{100 x}{l}-\left(\frac{60 x}{l}+20\right) \\
& =\frac{40 x}{l}-20 \tag{xvi}
\end{align*}
$$

[by (iii) and (xiiii

Hence ($x i v$) and ($x v$) give the boundary conditions and ($x v i$) gives the initial condition relative to the transient solution. Since the boundary values given by (xiv) and ($x v$) are both zero, therefore, as in part (a), we have $u_{f}(x, t)=\left(C_{1} \cos p x+C_{2} \sin p x\right) e^{-c^{2} p^{2} t}$

By (xiv),

$$
u_{t}(0, t)=C_{1} e^{-c^{2} p^{2} t}=0, \text { for all values of } t
$$

Hence $C_{1}=0$ and
$u_{t}(x, t)=C_{2} \sin p x \cdot e^{-c^{2} p^{2} t}$
...(xvii)
Applying ($x v$), it gives

$$
u_{t}(l, t)=C_{2} \sin p l e^{-c^{2} p^{2} t}=0 \text { for all values of } t
$$

$\sin p l=0$, i.e. $p l=n \pi$ as $C_{2} \neq 0 . p=n \pi l$, when n is any integer.
Hence (xvii) reduces to $u_{t}(x, t)=b_{n} \sin \frac{n \pi x}{l} e^{-c^{2} n^{2} \pi^{2} t / t^{2}}$ where $b_{n}=C_{2}$.

Adding all such solutions, the most general solution of (xvii) satisfying the boundary conditions (xiv) an $(x v)$ is

$$
\begin{equation*}
u_{t}(x, t)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} e^{-c^{2} n^{2} \pi^{2} t / l^{2}} \tag{xviiu}
\end{equation*}
$$

Putting $t=0$, we have $u_{t}(x, 0)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l}$
In order that the condition (xvi) may be satisfied, (xvi) and (xix) must be same. This requires the expan sion of $(40 / l) x-20$ as a half-range Fourier sine series in $(0, l)$. Thus

$$
\frac{40 x}{l}-20=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{l} \quad \text { where } b_{n}=\frac{2}{l} \int_{0}^{l}\left(\frac{40 x}{l}-20\right) \sin \frac{n \pi x}{l} d x=-\frac{40}{n x}(1+\cos n \pi)
$$

i.e., $b_{n}=0$, when n is odd $;=-80 / n \pi$, when n is even

Hence (xviii) becomes $u_{t}(x, t)=\sum_{n=2,4}^{\infty}\left(\frac{-80}{n \pi}\right) \sin \frac{n \pi x}{l} \cdot e^{-c^{2} n^{2} \pi^{2} t l l^{2}}$

$$
\begin{equation*}
=-\frac{40}{\pi} \sum_{m=1}^{\infty} \frac{1}{m} \sin \frac{2 m \pi x}{l} \cdot e^{-4 c^{2} m^{2} \pi^{2} t / l^{2}} \tag{xx}
\end{equation*}
$$

Finally combining (xiii) and ($x x$), the required solution is

$$
u(x, t)=\frac{40 x}{l}+20-\frac{40}{\pi} \sum_{m=1}^{\infty} \frac{1}{m} \sin \frac{2 m \pi x}{l} \cdot e^{-4 c^{2} m^{2} \pi^{2} t / l^{2}}
$$

Example 18.13. The ends A and B of a rod 20 cm long have the temperature at $30^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ until steady-state prevails. The temperature of the ends are changed to $40^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$ respectively. Find the temperature distribution in the rod at time t.

Solution. Let the heat equation be $\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$
In steady state condition, u is independent of time and depends on x only, (i) reduces to

$$
\begin{equation*}
\partial^{2} u / \partial x^{2}=0 \tag{ii}
\end{equation*}
$$

Its solution is $u=a+b x$
Since $u=30$ for $x=0$ and $u=80$ for $x=20$, therefore $a=30, b=(80-30) / 20=5 / 2$
Thus the initial conditions are expressed by

$$
u(x, 0)=30+\frac{5}{2} x
$$

The boundary conditions are $u(0, t)=40, u(20, t)=60$
Using (ii), the steady state temperature is

$$
u(x, 0)=40+\frac{60-40}{20} x=40+x
$$

To find the temperature u in the intermediate period,

$$
u(x, t)=u_{s}(x)+u_{t}(x, t)
$$

where $u_{s}(x)$ is the steady state temperature distribution of the form (iv) and $u_{t}(x, t)$ is the transient tem erature distribution which decreases to zero as t increases.

Since $u_{t}(x, t)$ satisfies one dimensional heat equation

$$
\begin{aligned}
\therefore \quad u(x, t) & =40+x+\sum_{n=1}^{\infty}\left(a_{n} \cos p x+b_{n} \sin p x\right) e^{-p^{2} t} \\
u(0, t) & =40=40+\sum_{n=1}^{\infty} a_{n} e^{-p^{2} t} \text { whence } a_{n}=0
\end{aligned}
$$

\therefore (v) reduces to $u(x, t)=40+x+\sum_{n=1}^{\infty} b_{n} \sin p x e^{-p^{2} t}$
Also

$$
u(20, t)=60=40+20+\sum_{n=1}^{\infty} b_{n} \sin 20 p e^{-p^{2} t}
$$

or

$$
\sum_{n=1}^{\infty} b_{n} \sin 20 p e^{-p^{2} t}=0 \text { i.e., } \sin 20 p=0 \text { i.e., } p=n \pi / 20
$$

Thus (vi) becomes $\quad u(x, t)=40+x+\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{20} e^{-n \pi t / 20}$
Using (iii), $\quad 30+\frac{5}{2} x=u(0, t)=40+x+\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{20}$

$$
\frac{3 x}{2}-10=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{20}
$$

or
where $b_{n}=\frac{2}{20} \int_{0}^{20}\left(\frac{3 x}{2}-10\right) \sin \frac{n \pi x}{20} d x=-\frac{20}{n \pi}(1+2 \cos n \pi)$
Hence from (vii), the desired solution is

$$
u=40+x-\frac{20}{\pi} \sum \frac{1+2 \cos n \pi}{n} \sin \frac{n \pi x}{20} e^{-(n \pi / 20)^{2} t}
$$

Example 18.14, Bar with insulated ends. A bar 100 cm long, with insulated sides, has its ends kept 0 $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ until steady state conditions prevail. The two ends are then suddenly insulated and hept so Find the temperature distribution.

Solution. The temperature $u(x, t)$ along the bar satisfies the equation

$$
\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

By law of heat conduction, the rate of heat flow is proportional to the gradient of the temperature. Th s if the ends $x=0$ and $x=l(=100 \mathrm{~cm})$ of the bar are insulated (Fig. 18.4) so that no heat can flow through the en s , the boundary conditions are

$$
\frac{\partial u(0, t)}{\partial x}=0, \frac{\partial u(l, t)}{\partial x}=0 \text { for all } t
$$

Initially, under steady state conditions, $\frac{\partial^{2} u}{\partial x^{2}}=0$. Its solution is $u=a x+b$.
Since $u=0$ for $x=0$ and $u=100$ for $x=l \quad \therefore \quad b=0$ and $a=1$.
Thus the initial condition is $u(x, 0)=x \quad 0<x<l$.
Now the solution of (i) is of the form $u(x, t)=\left(c_{1} \cos p x+c_{2} \sin p x\right) e^{-c^{2} p^{2} t}$
Differentiating partially w.r.t. x, we get

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\left(-c_{1} p \sin p x+c_{2} p \cos p x\right) e^{-c^{2} p^{2} t} \tag{v}
\end{equation*}
$$

Putting $x=0, \quad\left(\frac{\partial u}{\partial x}\right)_{0}=c_{2} p e^{-c^{2} p^{2} t}=0 \quad$ for all t.
[By (ii)]
$\therefore \quad c_{2}=0$
Putting $x=l$ in $(v), \quad\left(\frac{\partial u}{\partial x}\right)_{l}=-c_{1} p \sin p l e^{-c^{2} p^{2} t}$ for all t.
[By (ii)]
$\therefore \quad c_{1} p \sin p l=0$ i.e., p being $\neq 0$, either $c_{1}=0$ or $\sin p l=0$.
When $c_{1}=0$, (iv) gives $u(x, t)=0$ which is a trivial solution, therefore $\sin p l=0$.

$$
p l=n \pi \quad \text { or } \quad p=n \pi / l, \quad n=0,1,2, \ldots .
$$

Hence (iv) becomes $u(x, t)=c_{1} \cos \frac{n \pi x}{l} e^{-c^{2} n^{2} n^{2} t / l^{2}}$.
$\therefore \quad$ the most general solution of (i) satisfying the boundary conditions (ii) is

$$
\begin{equation*}
u(x, t)=\sum_{n=0}^{\infty} A_{n} \cos \frac{n \pi x}{l} e^{-c^{2} n^{2} \pi^{2} t l^{2}}=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{l} e^{-c^{2} n^{2} \pi^{2} t / l^{2}} \quad\left(\text { where } A_{n}=c_{1}\right) \tag{vi}
\end{equation*}
$$

Putting $t=0, u(x, 0)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{l}=x$
This requires the expansion of x into a half range cosine series in $(0, l)$.
Thus

$$
x=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n \pi x / l
$$

where $a_{0}=\frac{2}{l} \int_{0}^{l} x d x=l$
and

$$
\begin{aligned}
a_{n} & =\frac{2}{l} \int_{0}^{l} x \cos \frac{n \pi x}{l} d x=\frac{2 l}{n^{2} \pi^{2}}(\cos n \pi-1) \\
& =0, \text { where } n \text { is even } ;=-4 l / n^{2} \pi^{2}, \text { when } n \text { is odd. } \\
\therefore \quad A_{0} & =\frac{a_{0}}{2}=l / 2, \text { and } A_{n}=a_{n}=0 \text { for } n \text { even } ;=-4 l / n^{2} \pi^{2} \text { for } n \text { odd. }
\end{aligned}
$$

Hence (vi) takes the form

$$
\begin{align*}
u(x, t) & =\frac{l}{2}+\sum_{n=1,3}^{\infty} \frac{4 l}{n^{2} \pi^{2}} \cos \frac{n \pi x}{l} e^{-c^{2} n^{2} \pi^{2} t / l^{2}} \\
& =\frac{l}{2}-\frac{4 l}{\pi^{2}} \sum_{1}^{\infty} \frac{1}{(2 n-1)^{2}} \cos \frac{(2 n-1) \pi x}{l} e^{-c^{2}(2 n-1)^{2} \pi^{2} t / l^{2}} \tag{vii}
\end{align*}
$$

This is the required temperature at a point P_{1} distant x from end A at any time t.

Obs. The sum of the temperatures at any two points equidistant from the centre is always $100^{\circ} \mathrm{C}$, a constant.

Let P_{1}, P_{2} be two points equidistant from the centre C of the bar so

Fig. 18.4 that $C P_{1}=C P_{2}$ (Fig. 18.4).

If $\ldots A P_{1}=B P_{2}=x \quad$ (say), then $A P_{2}=l-x$.
\therefore Replacing x by $l-x$ in (vii), we get the temperature at P_{2} as

$$
\begin{aligned}
u(l-x, t)= & \frac{l}{2}-\frac{4 l}{\pi^{2}} \sum_{1}^{\infty} \frac{1}{(2 n-1)^{2}} \cos \frac{(2 n-1) \pi(l-x)}{l} e^{\frac{-c^{2}(2 n-1)^{2} \pi^{2} t}{l^{2}}} \\
= & \frac{l}{2}+\frac{4 l}{\pi^{2}} \sum_{1}^{\infty} \frac{1}{(2 n-1)^{2}} \cos \frac{(2 n-1) \pi x}{l} e^{\frac{-e^{2}\left(2 n-12 \pi^{2} t\right.}{l^{2}}} \\
& \left\{\because \cos \frac{(2 n-1) \pi(l-x)}{l}=\cos \left[2 n \pi-\pi-\frac{(2 n-1) \pi x}{l}\right]=-\cos \frac{(2 n-1) \pi x}{l}\right.
\end{aligned}
$$

Adding (vii) and (viii), we get $u(x, t)+u(l-x, t)=l=100^{\circ} \mathrm{C}$.

Module 3
Complex Variable - Dibeerentication
Complex number
Complex number is q the form $z=x+i y \quad$ where x io real part, y-maguary part.

$$
x=\operatorname{Re} z \quad y=\ln z
$$

Two complex numbers are equal if and Only if their real parts are equal and Here imaginary part are equal.

$$
\begin{array}{ll}
i=(0,1) & \bar{z}=x-i y \\
z=x+i y & z^{2}=-1 \Rightarrow z= \pm \sqrt{-1}= \pm 1^{0} .
\end{array}
$$

cent circle
cunt circle can be represented by
$|z|=1$
$|z-a|=\rho$ circle with centre a and
ai) Find the region in z plane represented
radius ρ.
by (i) $\left|z \cdot 21^{\circ}\right|=1$ (2) $\left|z+i^{\circ}\right|=2$
(9) $|z|=2$
\rightarrow (1)

(2) $\left|z+1+i^{\circ}\right|=y_{2}$

(3)
$\left|z-\left(Q+c^{*}\right)\right|=1$
Centre $=(2+1):(2,1)$ gradus \rightarrow)

Complex Junctions
5 is a set of complex numbers and a function fico defined on S is a rule shat assigns to every z in S a complex number w, called the value of f at z. We write. $\omega=f(z)$ Here z varies in g and 10 catted a complex variable. The Set ' S ' is called the domoun of f The set if all values of a function f is called the rome of ff.

W is complex then we write

$$
\omega=u+i v
$$

$$
\text { U } 00 \text { the real part. }
$$

$$
V \omega^{\circ} \text { the imaginary part }
$$

$W=f(z)=U(x, y)+i v(x, y)$
Qa) $\omega=f(e)=z^{Q}+3 z$ find u and y and calculate the value of of at $z=1+31^{\circ}$
Ans:

$$
\begin{aligned}
f(\pi)= & (x+i)^{2}+3(x+i y) \\
= & x^{2}+i 2 x y+i^{2} y^{2}+3 x+i 3 y \\
= & x^{2}+i^{\circ} 2 \pi y-y^{2}+3 x+i y \\
= & {\left[x^{2}-y^{2}+3 x\right]+i[2 x y+3 y] } \\
& C l+i v \\
C= & x^{3}-y^{2}+3 x \quad \text { - } \quad V=2 x y+3 y \\
\rho\left(1+3 i^{\circ}\right)= & \left(1+3 i^{\circ}\right)^{2}+3\left(1+3 i^{\circ}\right) \\
= & 1+6 i^{\circ}-a+3+9 i^{\circ}=-5+15 i^{\circ}
\end{aligned}
$$

2) $W=f(x)=21^{\circ} z+6 \bar{z}$ fund u and v and the value of f at $2=\frac{1}{2}+4 i^{\circ}$.

$$
\begin{aligned}
f(z) & =2 i^{\circ}(x+i y)+6\left(x-i^{\circ} 4\right) \\
& =2 i^{\circ} x-2 y+6 x-i^{\circ} 64 \\
& =(6 x-2 y)+i^{\circ}(2 x-6 y) \\
l & =\frac{6 x-2 y}{} \quad V=2 x-6 y \\
f\left(\frac{1}{2}+4 i^{\circ}\right) & =2 i^{\circ}\left(\frac{1}{2}+4 i^{\circ}\right)+6\left(\frac{1}{2}-4 i^{\circ}\right) \\
& =i^{\circ}-8+3-24 i^{\circ} \\
& =-5-29 i^{\circ}
\end{aligned}
$$

ana $f(z)=5 z^{2}-12 z+3+21^{\circ}$
find u and v and calculate the value if of $z=4-3 i^{\circ}$.
(3) If $f(z)=\frac{1}{1+z}$ find real pars of f and Imagnary past of f and the rr value of $z=i t^{\circ}$

$$
\text { 41.w } f(z)=\frac{z-1}{z+1} \text { at } z=2 i^{\circ}
$$

Limit, contonuty
A. Punction $f(x)$ is sous to have the Imit I as z approaches a point ko, written

$$
\lim _{z \rightarrow z_{0}} f(x)=l
$$

of If defined un a neighbourhood of z_{0} and of the values of i are close to ' f ' for all z close to z.
A function $f(z)$ is Soul to be cuntinnuoles it a $\mathrm{lm} \quad f(z)=1$ exist and $\mathrm{b}_{\mathrm{z}=z_{0}} f(x)=f\left(x_{0}\right)$

$$
\begin{aligned}
& \omega=f(z) \\
& =\frac{1}{1+z} \\
& \text { univ }=\frac{1}{1+(x+1 y)}=\frac{1}{(+x)+1 y}=\frac{(1+x)-1 y}{[(1+x)+(y)[1+x)+y]} \\
& =\frac{1+x-1 \cdot y}{\left(1+1 x^{2}+y^{2}\right.} \\
& =\frac{1+x}{(1+x)^{2}+y^{2}}-0 \frac{y}{(1+x)^{2}+y^{2}} \\
& U(x, y)=\frac{1+x}{(1+x)^{2}+y^{2}} \quad V(x, y)=\frac{-y}{(1+x)^{2}+y^{2}} \\
& z=1-1^{\circ} \quad x=1 \quad y=-1 \\
& u=\frac{1-51}{(1+1)^{2}+1^{2}}=\frac{2}{5} \quad V=-\frac{-1}{(1+1)^{3}+1^{2}}=\frac{1}{5} \\
& \therefore f=u+\pi=\frac{2}{5}+\frac{1}{5}{ }^{\circ}
\end{aligned}
$$

Derivative
The derivative of a complex function of at a point z_{0} is written $f^{\prime}\left(z_{0}\right)$ and is defined by $f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}$ Proveded this limit exist. Then f is said to be differentiable at 2_{0}.

$$
\text { Or } f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} \quad\left\{\begin{array}{l}
\text { Take } \\
\Delta z=z-z_{0}
\end{array}\right.
$$

Poms
1 ST $\lim _{z \rightarrow 0} \frac{z}{\bar{z}}$ does not exist.
$\rightarrow \quad \lim _{z \rightarrow 0} \frac{z}{z}=\lim _{(x, y) \rightarrow 0} \frac{x+c y}{x-i y}$
Take $y=m x$.

$$
\lim _{x \rightarrow 0} \frac{x+i m x}{x-i m x}=\lim _{x \rightarrow 0} \frac{x(1+i m}{x(1-i m)}=\frac{1+i m}{1-i m}
$$

It depends on m. \therefore limit doesnot exist.
2. Chuck whether $\lim _{z \rightarrow 0}\left(\frac{2}{z}\right)^{2}$ exist or not-

An

$$
\begin{aligned}
& \lim _{z \rightarrow 0}\left(\frac{z}{z}\right)^{2}=\lim _{(x, y) \rightarrow 0}\left(\frac{x+i y}{x-i y}\right)^{2} \\
& y=m x \cdot \\
& \lim _{x \rightarrow 0}\left[\frac{x+i m x}{x-i m x}\right]^{2}=\lim _{x \rightarrow 0}\left[\frac{x^{\prime}(1+i m)}{x(1-i m)}\right]^{2}
\end{aligned}
$$

$=(1+\mathrm{cm})^{2}$ depend, on $m \Rightarrow$ hari-doesnolexist
(3) Checle whethen the following fanctions are continuous or not at $z=0$

1) $f(z)=\left\{\begin{array}{cc}\frac{R_{e}(z)}{|z|}, & z \neq 0 \\ 0 & z=0\end{array}\right.$
\rightarrow Continuty -1(ञ) (1) imnt स्याड-
(2) $\lim _{z \rightarrow x_{0}} f(z)=f\left(z_{0}\right)$

$$
\lim _{z \rightarrow 0} f(z)=\lim _{z \rightarrow 0} \frac{\operatorname{Re}(z)}{|z|}=\lim _{z \rightarrow 0} \frac{x}{\sqrt{x^{3}+y^{2}}}
$$

$y=m x \quad \lim _{x \rightarrow 0} \frac{a}{\sqrt{x^{2}+(m x)^{2}}}=\lim _{x \rightarrow 0} \frac{x}{x \sqrt{1+m} t}$
depends on $m \Rightarrow$ hanit doesnol exisi-
\Rightarrow fecention disconlinuowr.
(4). $f(z)=\left\{\begin{array}{rc}\frac{R e\left(x^{2}\right)}{|z|} & z \neq 0 \\ 0 & z=0\end{array}\right.$

Aps: $\lim _{z \rightarrow 0} f(z)=\lim _{z \rightarrow 0} \frac{\operatorname{Re}\left(z^{2}\right)}{\frac{1 z 1}{2} .}$

$$
=\lim _{(x, 4) \rightarrow 0} \frac{x^{2}-y^{2}}{\sqrt{x^{2}+y^{2}}}
$$

$$
\begin{aligned}
& 2^{2},(x+i y)^{2} \\
& =x^{2}-y^{2}+i 2 x y
\end{aligned}
$$

$y=m x$. $\lim _{x \rightarrow 0} \frac{x^{2}-m^{2} x^{2}}{\sqrt{x^{2}+m^{2} x^{2}}} \quad \operatorname{lin}_{x \rightarrow 0} x^{x}(1 \ldots \sqrt{2}(1+m)$
\Longrightarrow lmit exist-
$=0$ doesnot depent onm

$$
f\left(z_{0}\right)-f(0)=0
$$

hnoit exist and
$\therefore \lim _{z \rightarrow 0} f(z)=f\left(z_{0}\right) \Longrightarrow$ function $f(z)$ to contenuous at $z=0$
(3) $f(z),\left\{\begin{array}{cc}\frac{\operatorname{lm}\left(z^{2}\right)}{|z|^{2}} & z=10 \\ 0 & z=0\end{array}\right.$

$$
\begin{aligned}
& \lim _{z \rightarrow 0} f(z)=\lim _{z \rightarrow 0} \frac{\operatorname{lm}\left(z^{2}\right)}{|x|^{2}}=\lim _{(x, y) \rightarrow 0} \frac{2 x y}{x^{2}+y^{2}} \\
& y=m x \rightarrow \lim _{x \rightarrow 0} \frac{2 x \times m x}{x^{2}+m^{2} x^{2}}=\frac{\left.2 m x^{2}\right)}{x^{2}\left(1+m^{2}\right)}
\end{aligned}
$$

\therefore depends on $m \Rightarrow$ lunt doemot
eocist $\Rightarrow f(z)$ not contenuous at $z=0$
(4) $f(2)=\left\{\begin{array}{c}1210 \min \left(\frac{1}{2}\right) \\ 0 \\ z=0 \\ z=0\end{array}\right.$
5) $\quad f(z)=\left\{\begin{array}{cc}\frac{m(z)}{(z)} & z \neq 0 . \\ 0 & z=0 .\end{array}\right.$

1) $S \cdot T \quad f(z)=z^{2}$ differentiable for all z

$$
\begin{aligned}
f^{\prime}(z)= & \lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z} \\
& =\lim _{\Delta z \rightarrow 0} \frac{(z+\Delta z)^{2}-z^{2}}{\Delta z} \\
& =\lim _{\Delta z \rightarrow 0}\left(\frac{\left.2 z \Delta z+\Delta z^{2}\right)}{\Delta z}=\lim _{\Delta z \rightarrow 0} \frac{\Delta z[2 z+\Delta z)}{\Delta z}\right. \\
& =\frac{2 z}{}
\end{aligned}
$$

$\therefore f(z)=z^{a}$ is differenteable everywhere.
2) Cheik the defferenticability of f(z) $1 z P^{2}$

$$
f^{\prime}(z)=\lim _{\Delta z \rightarrow 0} f(x+\Delta z)-f(z)
$$

$$
\begin{aligned}
& \lim _{\Delta z \rightarrow 0} \frac{|z+\Delta z|^{2}-|z|^{2}}{\Delta z} \quad|z|^{2}=z \bar{z} \\
&= \lim _{\Delta z \rightarrow 0} \frac{(z+\Delta z)(\overline{z+\Delta z})-z \bar{z}}{\Delta z} \\
&=\lim _{\Delta z \rightarrow 0} \frac{(z+\Delta z)(\bar{z}+\overline{\Delta z})-z \bar{z}}{\Delta z} \quad \overline{z+\Delta z}=\bar{z}+\overline{\Delta z} \\
&= \lim _{\Delta z \rightarrow 0} \frac{z \bar{z}+z \Delta \bar{z}+\Delta z \bar{z}+\Delta z \cdot \bar{z}-z \bar{z}}{\Delta z} \\
&=\lim _{\Delta z \rightarrow 0} z \frac{\Delta \bar{z}}{\Delta z}+\bar{z}+\overline{\Delta z}
\end{aligned}
$$

The lemit doesnot exist $\Rightarrow f(z)$ is not deyperitiatle
(3) Check the defferemtiability of \bar{z}

$$
\begin{aligned}
f^{\prime}(z) & =\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z} \\
& =\lim _{\Delta z \rightarrow 0} \frac{(\overline{z+\Delta z)-\bar{z}}}{\Delta z} \\
& =\lim _{\Delta z \rightarrow 0} \frac{(\bar{z}+\Delta \bar{z}-\bar{z})}{\Delta z} \\
& =\lim _{\Delta z \rightarrow 0} \frac{\overline{\Delta z}}{\Delta z}
\end{aligned}
$$

lunit doernot exist-
\therefore The function is deocurionous

Analytic function
A function $f(z)$ is said to be analytic in a domain D if $f(z)$ is defined and depperenteable at all points if 0 .

Cauchy - Reran Equations
Let $\omega=f(z) \cdot U(x, y)+i v(x, y)$ is analytic in a domain D if partial derivatives exists and satisfy the conditions

$$
U_{x}=V_{y} \text { of } U_{y}=-V_{x}
$$

Poms
1 Show that $f(z)=z^{a}$ is analytic for all z.
Ans. $f(z)=z^{Q}$ is analytic if $C-R$ eqns are
Salispued

$$
\begin{aligned}
& P(z)=z^{2}=(x+c y)^{2}=x^{2}-y^{2}+c 2 x y \\
& U=x^{2}-y^{2} \quad V=2 x y \\
& U_{x}=2 x \quad V x=2 y \\
& U_{y}=-2 y \quad V y=2 x \\
& U_{x}=V_{y} \text { \& } \quad U_{y}=-V x \\
& C \text { Saleoped }
\end{aligned}
$$

C. K equations Saleogued
$\Rightarrow f(z) \backsim$ analytic
2 Show that $f(z)=e^{z}$ is analytic everywhere.

Ans

$$
\begin{aligned}
& f(z)=e^{z} \\
& \cdot e^{x+c y}=e^{x} \cdot e^{(y}=e^{x}[\cos y+c \sin y] \\
& U=e^{x} \cos y \quad V \\
& U_{x} \sin y \\
& U_{x}=e^{x} \cos y \quad V_{x}=e^{x} \sin y \\
& U_{y}=-e^{x} \sin y \quad V y=e^{x} \cos y
\end{aligned}
$$

$U_{x}=V_{y} \quad \& \quad U_{y}=-V_{x} \Rightarrow C \cdot R$ eqns Salusfud
$f(z)$ is analytic
3 Test the analyticity of $f(z)=\operatorname{Rec}\left(z^{8}\right)-\operatorname{lm}\left(z^{2}\right)$
Ans:

$$
\begin{array}{ll}
f(z)=x^{d}-y^{2}-2 x y & \\
U=x^{2}-y^{2}-2 x y & V=0 \\
U_{x}=2 x-2 y & V_{x}=0 \\
U_{y}=-2 y-2 x & V_{4}=0
\end{array}
$$

$$
\begin{aligned}
z^{2} & =(x+c y)^{2} \\
& =x^{2}-y^{2}+12 x y
\end{aligned}
$$

C-K eqns are not salesfeed
$\Rightarrow f(z)$ not analytic
$4 \quad \omega=\sin z$
$u+c v=\operatorname{sm}(x+c y)=8 m x \cos c y+\cos x \operatorname{smc} y$

$$
=\sin (x+1 y)=\sin x \cosh y+\cos x \times \sinh y\left\{\begin{array}{l}
\sin (1 x)=i \sinh x \\
\cos (1 x)=\cosh x
\end{array}\right.
$$

$=\operatorname{sm} x \cosh y+i \cos x \sin b y$
$U 1=$ inncesby $V=\cos x \operatorname{mb} y$
$U_{x}=\cos x \cosh y$ $V_{x}=-\sin x \sinh y$
$U_{y}=+\operatorname{son} x$ sonby $V_{y}-\cos x \cos b y$
$U_{x}=v_{y} \quad \& U_{y}=-V_{x} \Rightarrow C \cdot R$ eqns Salesfud $f(z)=\sin z$ is omolutic

5

$$
\begin{aligned}
& \omega \cdot \cosh 2 \\
& \text { u+cy os (ix) } \\
& -\operatorname{cose}(x+1 y)=\cos (1 x-y) \\
& \text { - } \operatorname{cose} x \cos y+\sin (1 x) \sin y \\
& =\cosh x \cos y+1 \sinh x \sin y \\
& U=\cosh x \cos y \text { of } V=\sinh x \sin y \\
& U_{x} . \operatorname{monh} x \cos y \quad V_{x}=\cosh x \sin y \\
& \text { by - wibaeloy } \quad V y=\text { हinhe cosy }
\end{aligned}
$$ $\Rightarrow f(z)$ is analytic

$H w^{2}(1) \quad f(z)=z z$
(2) $f(z)=i z \bar{z}$
(3) $\quad \omega)=\cos z$
(4) $\omega=\sinh z$

Laplace equation

$$
\text { if } f(x)=u(x, y)+i v(x, y)
$$

is analytic in a domain D then u and v salify the Laplace equation.

$$
\begin{aligned}
& \text { equation. } \\
& \nabla^{2} u=u_{x x}+u_{y y}=0 \quad \text { and } \quad \nabla v=v_{x x}+v_{y y}=0
\end{aligned}
$$

Nolde 1) Solutions of Laplace equation having contenuour $2^{\text {nd }}$ order partial derivatives are called hormone functions
2) The real and imaginary pasts of analytic functions are harmonic functions

Proms
1 velugy that $u(x, y)=x^{9}-y^{2}$ is harmonic and fend tis hamonsilate Also find the aesocialey analytic function.
Ans: \quad dex,y, $=x^{d}-y^{2}$

$$
\begin{aligned}
& U_{x:}=2 x \quad U_{x x}=2 \\
& u_{y}=-2 y \quad U_{y y}=-2 \\
& \nabla^{2} v=c_{x x}+u_{y y}=2-2=0
\end{aligned}
$$

Laplace equeation Saturfed
$\therefore U \&$ a harmonie functum.
C.R equations $\quad U_{x}=v_{y} \quad \& U_{y} \equiv V_{x}$

$$
V_{y}=2 x \quad V_{x}=2 y
$$

$$
V_{x}=2 y
$$

miegrating bothside writo x.

$$
\begin{aligned}
& \int V_{x} d x=\int 2 y d x \\
& V=2 x y+h(y)
\end{aligned}
$$

diff (i) whito y

$$
V_{y}=2 x+h^{\prime}(y)
$$

we know thot $V_{4}=2 x$

$$
\begin{aligned}
& 2 x+h^{\prime}(y)=2 x \Rightarrow b^{\prime}(y z=0 \\
& \Rightarrow h(y)=c \\
& \text { (1) } \Rightarrow V=2 x y+c
\end{aligned}
$$

$$
\text { f(2): } u+1 v=x^{2} y^{2}+i(2 x y+i)
$$

2 Verfy that $u=e^{x} \cos y$ bormanie and find Its hasmonei conjugale Also fand $f(z)$

Ans.

$$
\begin{array}{ll}
u=e^{x} \cos y \\
u_{x}=e^{x} \cos y & u_{4}=-e^{x} \sin y \\
u_{x x}=e^{x} \cos y & u_{y_{4}}=e^{x} \cos y
\end{array}
$$

$$
C_{n x+} U_{y / 4}=0 \Rightarrow \text { U. Sormonic }
$$

By C.B equs

$$
\begin{aligned}
& \text { By } C \cdot \xi=e^{n 5} \\
& U_{x}=V_{y} d \quad U_{y}=-V_{x} \\
& \left.V_{y}=e^{x} \cos y \quad V_{x}=-\left(-e^{x} \sin y\right) \cdot c^{x} \sin y \quad-x \cdot\right) \\
& V_{y}=e^{x} \cos y \\
& \text { integrating wato } y \quad V=e^{x} \sin y+f(x)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Defs } w \cdot 10 x \quad V_{x}=e^{x} \sin y+f^{\prime}(x) \\
& f^{x} \sin y+f^{\prime}(x) \quad \Rightarrow
\end{aligned}
$$

(1) $\Rightarrow e^{x} \sin y=e^{x} \sin y+f^{\prime}(x) \quad \Rightarrow f^{\prime}(x)=0$ $f(x)=c$

$$
V=e^{x} \sin y+c
$$

$$
f(z)=e^{x} \cos y+i\left(e^{x} \sin y+c\right)
$$

3 PT $U=\cos x \cos b y$ io hasmonie. Also find harmonic cinjugale.
Aos: $\quad U=\cos x \cosh y$
$U_{x}=-\sin x \cosh y \quad U_{y}=\cos x \sinh y$
$U_{n x}=-\cos x \cosh y \quad U_{4 y}=\cos x \cosh y$ $U_{x x}+U_{y y}=0 \longrightarrow 4$ harmonex
using C.R eqns
$V_{y}=-\sin x \cos b y$

$$
V_{x}=-\cos x \sinh y
$$

Integrating wh to y

$$
V=-\sin x \sinh y+f(x)
$$

Lim wr.to x

$$
\begin{aligned}
& w \text { r. to } x \\
& V_{x}=-\cos x \sinh y+f^{\prime}(x)
\end{aligned}
$$

$$
\text { (1) } \Rightarrow \quad \begin{aligned}
& \quad f^{\prime}(x)=0 \quad \Rightarrow f(x)=c \\
& \\
& V=-\sin x \sinh y+c
\end{aligned}
$$

$$
f(z)=\cos x \cosh y+i(-\sin x \sinh y+c)
$$

4) P-T $\quad U=x^{3}-3 x y^{2}+3 x^{2}-3 y^{2}+1$ is harmonei. Also find harmoni conjugale-
An:

$$
\begin{array}{ll}
U=x^{3}-3 x y^{2}+3 x^{2}-3 y^{2}+1 \\
u_{x}=3 x^{4}-3 y^{2}+6 x & U_{y}=-6 x y-6 y \\
U_{x x}=6 x+6 & U_{y y}=-6 x-6
\end{array}
$$

$U_{x x}+U_{y y}=0 \Rightarrow \mathrm{Cl}$ harmonii
By C.R eqns

$$
\left.\begin{array}{l}
\text { By C.R eqns } \\
V_{y}=u_{x}=x^{2} 3 x y \\
3 x^{2}-3 y^{2}+6 x \\
V_{4}=3 x^{2}-3 y^{2}+6 x
\end{array} \quad V_{x}=-u_{y}=6 x y+6 y\right\} \rightarrow(i)
$$

Integrating w.r.to y

$$
V=8 x^{8} y-y^{3}+6 x y+h(x)
$$

$$
\text { difib w. to } x
$$

$$
V_{x}=6 x y+6 y+h^{\prime}(x)
$$

(i) $\Rightarrow h^{\prime}(x)=0 \quad h(x)=c$. find the conserponiting amatytio function

Ans

$$
\begin{array}{ll}
U=x^{3}-3 x y^{2} & \\
U_{x}=3 x^{2}-3 y^{2} & U_{4}=-6 x y \\
U_{x x}=6 x & U_{4 y}=-6 x
\end{array}
$$

$U_{x x}+U_{44}=0 \Rightarrow C_{0}$ hoomonei
using C.R eqos

$$
\begin{aligned}
& V_{y}=3 x^{2}-3 y^{2} \quad V_{x}=6 x y \quad-x(1) \\
& V_{4}=3 x^{8}-3 y^{2}
\end{aligned}
$$

untegrating W\&to 4

$$
V=3 x^{4} y-y^{3}+f(x)
$$

1048 w sh to x

$$
V_{m}=6 x y \pm f^{\prime}(x)
$$

(1) $\Rightarrow f^{\prime}(x)=0 \Rightarrow f(x)=c$ ang

$$
\begin{aligned}
& \therefore V=3 x^{9} y-y^{3}+c \\
& f(z)=x^{3}-3 x y^{2}+i\left(9 x^{2} y-y^{3}+c\right)
\end{aligned}
$$

6 If $f(z)=u(x, y)+i v(x, y)$ be an analytic function thes prove the following.
(1) $V(x, y)=$ a constant $\Rightarrow f(z)$ a Constanc.
2) $V(x, y)=a$ constant $\Rightarrow f(z)$ is consiant.
3) $|f(z)|=$ a constant. $\rightarrow f(z)$ cunstant.
4) $A_{\text {ag }}(f(z))=a$ constant $\Rightarrow f(z)$ of contang

Proog
(1) $U(x, y)=a$ constomt $=k$

$$
\Rightarrow \frac{\partial u}{\partial x}=0 \quad \frac{\partial u}{\partial u}=0
$$

using $C \cdot R$ equations $u_{x}=v_{y}=0 \quad U_{y}=-v_{x}=0$

$$
\begin{aligned}
& V_{y}=0 \quad d \quad V_{x}=0 \\
& \Rightarrow V(x, y)=a \text { constanx } .
\end{aligned}
$$

u, v constomt $\Rightarrow f\left(v^{2} y\right)=u+e v$ constoml-
(2) $V(x, y)=$ a constemt $=k$

$$
\Rightarrow v_{x}=0 \quad V_{y}=0
$$

By Using $C-R$ eqns
Clev are constamt $\Rightarrow f(z) \operatorname{constan} x-$
(3),$|f(z)|=$ constamL $\Rightarrow|f(x)|=k \quad \Rightarrow \sqrt{u^{2}+v^{2}}=k$

$$
\Rightarrow u^{2}+v^{2}=k^{2}=0 \longrightarrow(1)
$$

Diff wr to to x

$$
\begin{align*}
& \text { to } x \tag{2}\\
& 2 v U_{x}+2 v v_{x}=0 \Rightarrow U U_{x}+v v_{x}=0
\end{align*}
$$

Dyf (i) wito y

$$
\begin{align*}
& \text { (i) whto } y \tag{3}\\
& \Rightarrow 2 u v_{y}+2 v v_{y}=0 \Rightarrow u u_{y}+v v_{y}=0
\end{align*}
$$

using C.R eqps in (2) $\&(3) \quad\left\{v_{x}=-u_{y} \quad \& v_{y}=u_{x}\right\}$
(2) $\Rightarrow u u_{x}-v v_{y}=0$
(3) $\Rightarrow u_{y}+v u_{x}=0$
(4) $x u+$ (5) $\times v$

$$
\begin{gather*}
u^{2} u_{x}-u v u_{y}+u v u_{y}+v^{2} u_{x}=0 \tag{5}\\
\left(u^{2}+v^{2}\right) u_{x}=0 \Rightarrow u_{x}=0 \\
\Rightarrow u_{\text {modependent }} \text { of }
\end{gather*}
$$

(9) $\times 4-(4) \times v$

$$
\begin{aligned}
& 0 \text { indepenterd of } y
\end{aligned}
$$

$\Rightarrow U$ constant
$\Rightarrow f(x)$ constant.
4) $\left.\operatorname{Agg}\left(d_{1} x\right)\right)$ lon) $\left(Y_{u}\right)+k$

$$
\begin{aligned}
\frac{v}{u}=\tan k & \Rightarrow u=v(a k k \\
& \Rightarrow u=v k_{1} \\
& \Rightarrow u-v k_{1}=0
\end{aligned} \quad\left\{\left(\cos k=m_{1}\right)\right.
$$

U. $v k_{1} \&$ the real part of $\left(1+c^{*} k_{1}\right)(u+i v)$

$$
(1+i k=) f(x)=\text { constions }=k
$$

Conformal mapping
A Complex function we $f(z)$ is calleo Conformal if it preserves angles between orion oriented curves in magnitude as well as in Sense of rotation.
1 Discuss the conformal mapping of $\omega=z^{8}$
An: Given $f(z)=z^{9}$

$$
\begin{aligned}
& \quad 4+1 v=(x+1 y)^{2}=x^{4}-y^{2}+12 x y \\
& 10=x^{4}-y^{2} \quad N=2 x y
\end{aligned}
$$

$x=c$

$$
\begin{array}{rlrl}
\Rightarrow u & =x^{2}-y^{2} & v & =2 c y \\
\Rightarrow & y^{2}=c^{4}-a & v^{2} & =4 c^{2} y^{2} \\
& & =4 c^{2}\left(c^{2}-u\right)
\end{array}
$$

Parabola open to the left

2 plane

$$
\text { yak } \left.\quad \begin{array}{rl}
u=y x^{2}-k^{2} & y
\end{array}\right)=2 x k . ~\left(\begin{array}{ll}
y^{2} & =4 x^{4} k^{2} \\
& =4\left(u+k^{2}\right) k^{2} \\
x^{2}=u+k^{2} & \\
& =4 k^{2}\left(u+k^{2}\right)
\end{array}\right.
$$

Parabola open to the right-
2 Discuss the conformal mapping of $w=e^{z}$
Ans $\quad \omega=e^{z}$

$$
\begin{aligned}
& u+c v=e^{x+e y}=e^{x} \cdot e^{(y}=e^{x}(\cos y+\sin y) \\
& u=e^{x} \cos y \quad v=e^{x} \sin y
\end{aligned}
$$

Case I $\quad x=k$

$$
\begin{aligned}
& u=e^{k} \cos y \quad v=e^{k} \sin y \\
& u^{2}+v^{2}=e^{2 k} \quad \quad u^{2}+v^{2}=\left(e^{k}\right)^{2}
\end{aligned}
$$

$x=$ constomis maps to a circle wit centre Origin and radius e^{x}.

Case 2 $y=k$

$$
\begin{aligned}
& u \cdot e^{x} \cos k \quad v=e^{x} \sin k \\
& \frac{v}{u}=\tan k \\
& \tan ^{-1}(v / u)=k \\
& \arg \omega=k \quad \text { maps to a ray }
\end{aligned}
$$

Pons
1 Find the image of the triangle bounded by $x=1 \quad y=1$ and $x+y=1$ under $w=z^{2}$

Ans:

$$
\left.\begin{array}{rl}
w & =z^{2} \\
u+1 v=(x+c y)^{2} & =x^{2}-y^{2}+i 2 x y \\
u=x-y^{2} \quad v & =2 x y \\
x=1 ; u=1-y^{2} \quad v & =2 y \\
y^{2} & =1-u \quad v^{2}
\end{array}=4 y^{2}\right)
$$

Image $q \quad x=1$ is $v^{2}=4(1-u)$ parabola

$$
\begin{array}{rlrl}
y=1 & u=x^{2}-1 & v & =2 x . \\
x^{2}=u+1 & v^{2} & =4 x^{2} \\
& =4(u+1)
\end{array}
$$

$y=1$ to a parabola $v^{2}=4(u+1)$

$$
\begin{array}{cl}
x+y=1 \quad U=x^{2}-y^{2} \quad U=(x+y)(x-y) \\
& U=x-y \quad V=2 x y \\
(x+y)^{2}=(x-y)^{2}+4 x y \\
1= & u^{2}+2 v \Rightarrow \text { parabola }
\end{array}
$$

2 Find the image of the frost. quadrant of 2 plane usda the trangaimation $\omega=$ zed
Aa)

$$
\begin{aligned}
& w=z^{4} \\
& u=x^{4}-y^{2} \quad V=2 x y \\
& \quad 0 \leq \theta \leq \pi / 2 .
\end{aligned} \begin{aligned}
& R=x^{1 \theta} \\
& W=R e^{1 \phi} \\
& \omega=z^{2} \\
& R e^{1 \phi}, r^{2} e^{120} \\
& R=r^{2} \phi=20
\end{aligned}
$$

$$
\begin{array}{lll}
\theta=0 & \phi=0 & 0<\phi<\pi \\
c=\pi / 2 & \phi=\pi &
\end{array}
$$

1 Find the image of the region $-\log 2 \leq x=\log 4$ Under the mapping $\omega=e^{2}$.

$$
\left\{\begin{array}{c}
x \text { constant }+e^{t_{0}} \\
|\omega|=e^{x_{0}} \\
y=\text { constants to } \operatorname{aig} \omega=y_{0}
\end{array}\right.
$$

Zplane.
Image of the line $x=-\log 2$ is the coracle

$$
\begin{aligned}
& |\omega|=e^{-\log 2}=e^{\log 2^{-1}}=1 / 2 \\
& x=\log 4 \text { to } \quad|\omega|=e^{\log 4}=4
\end{aligned}
$$

W plans.
2 Find the image of the region $-1 \leq x \leq 2$, $-\pi \leq y \leq \pi \quad$ under $\quad w=e^{z}$
Ans $x=-1$ to the circle $|\omega|=e^{-1}$
$x=2$ do the circle $|\omega|=e^{2}$.
$y=-7$ and $y=7$ are mapped on the rays $\arg \omega=-\pi$ and $\arg \omega=\pi$.

Discuss

$$
w=\frac{1}{2}
$$

$$
z=r e^{10}
$$

$$
\omega=R c^{\dagger \phi}
$$

$$
R e^{\prime \phi}=\frac{1}{r e^{i \theta}}=\frac{1}{\gamma} e^{-\omega \theta}
$$

$$
R=\frac{1}{7} \quad \phi=-\theta .
$$

$|z|=1 \longrightarrow T=1 \quad R=1 \longrightarrow|\omega|=1$ unit cire.

$$
\begin{aligned}
& u+i v=\frac{1}{x+c y}=\frac{x-c y}{x+y} \\
& U=\frac{x}{x^{2}+y^{2}} \quad V=\frac{-y}{x^{2}+y^{2}} \quad\left\{\begin{array}{l}
z=\frac{1}{w} \\
x+c y=\frac{1}{u+i v} \\
x=\frac{u}{u^{2}+v^{2}} \quad y=\frac{-v}{u^{2}+v-2}
\end{array}\right.
\end{aligned}
$$

Fined points
fixed points of a mapping ω = $f(z)$ are points that are mapped on to themselves. are kept fired under the mapping.

Tho $w: f(z)=z$.

Dbms
$1 \frac{1}{4}<y<\frac{1}{2} \quad$ under $\omega=\frac{1}{2}$
Ans

$$
\begin{aligned}
& w=\frac{1}{2} \\
& u+i v=\frac{1}{b+1} y=\frac{1}{\omega} \\
& x=\frac{u}{u^{2}} v^{2} \quad v=\frac{-y}{x^{2}+y^{2}} \quad y=-\frac{v}{x^{2}+w^{2}}
\end{aligned}
$$

uhivetaven which it the cmlemen hase of a cosele

$$
y+16=-\quad v=1 / 2
$$

$2 v \times\left(1^{2}+y^{2}-211^{2}+v^{2}+2 v>0\right.$ extewos
plas of a cacle.

(2)

$$
\begin{aligned}
& 0<y<y= \\
& 0<y \rightarrow 0<v \\
& y<1 / 2 \quad 0<v \\
& u^{2}+v^{2}
\end{aligned}
$$

exteres pors of the carde passing through Oregun and cenlae $(1,0)$
Thus image if the eregrum oxget/, mans to the extevios parl \&f the cixcle below जaxit.

Linear fractional Transformation
[Mobius transformations]
Linear Fractional transformation are mappings $W=\frac{a z+b}{c z+d}$, ad-be+0, a, b, i, d are
complex or real complex or real
Special Cases numbers.
$\omega=z+b \rightarrow$ Translation
$W=a z$ with $|a|=1 \quad$ Potation
$\omega=a z+b$ linear transformation
$\omega=y_{z}$ inverition.
Pho The maxing $\omega=\frac{1}{2}$ maps every Straight. line or circle onto a circle on Slraightilue

Proof.

$$
A\left(x^{2}+y^{2}\right)+B x+C y+D=0 \rightarrow(1) \begin{gathered}
A, B, C, D \text { real at complex } \\
\text { numbers }
\end{gathered}
$$

Represent- Straight line if $A=0$.
circle ib $A \neq 0$.
we know that $x=\frac{z+\bar{z}}{2}$ and $y=\frac{z-\bar{z}}{2 c^{\circ}}$

$$
z \bar{z}=x^{2}+y^{2}
$$

(1) $\Rightarrow A z \bar{z}+B\left(\frac{z+\bar{z}}{2}\right)+C\left(\frac{z-\bar{z}}{2 i^{\circ}}\right)+D=0$

By inversion $\omega=1 / 2 \Rightarrow z=1 / \omega \quad \bar{z}=1 / \omega$
(ब) \Rightarrow

$$
\begin{aligned}
& A \cdot \frac{1}{\omega} \cdot \frac{1}{\omega}+B\left[\frac{\frac{1}{\omega}+\frac{1}{\omega}}{2}\right]+C\left[\frac{\frac{1}{\omega}-\frac{1}{\omega}}{2 i}\right]+D=0 \\
& \frac{A}{\omega \omega}+B\left[\frac{\bar{\omega}+\omega}{2 \omega \omega}\right]+C\left[\frac{\bar{\omega}-\bar{\omega}}{2 i \omega \bar{\omega}}\right]+D=0
\end{aligned}
$$

$$
\begin{aligned}
& X \omega \bar{\omega} \quad A+B\left[\frac{\bar{\omega}+\omega}{2}\right]+C\left[\frac{\omega-\omega}{2 i^{\circ}}\right)+D(\omega+\bar{\omega}]=0 \\
& \omega=u+e \bar{v} \quad \Longrightarrow A+B u-C V+D\left(u^{2}+v^{2}\right)=0 \\
& U=\frac{\omega+\bar{\omega}}{2} \quad u^{2}+v^{2}=\omega \bar{\omega} \quad D=0 \quad \text { represeot Slraighl fine } \\
& V=\frac{\omega-\omega}{2 v^{3}} \quad D \neq 0 \quad \text { Ciscle }
\end{aligned}
$$

Pbin Find the image of the circle $|z-3|=5$ cender the iransfarmation $W=\frac{1}{2}$

Aos

$$
\begin{aligned}
& W=1 / 2 \Rightarrow z=1 / w \Rightarrow x+c y=\frac{1}{u+c v}=\frac{u-c v}{u^{2}+v^{2}} \\
& x=\frac{u}{u^{2}+v^{2}} \quad y=\frac{-v}{u^{2}+v^{2}} \\
& |z-3|=5 \Rightarrow|x+c y-3|=5=\sqrt{(x-3)^{2}+y^{2}}=5 \\
& (x-3)^{2}+y^{2}=25 \\
& {\left[\frac{u}{u^{2}+v^{2}}-3\right]^{2}+\left[\frac{-v}{u^{2}+v^{2}}\right]^{8}=25} \\
& {\left[u-3\left(u^{2}+v^{2}\right)\right]^{9}+v^{2}} \\
& \left(u^{2}+v^{2}\right)^{2}
\end{aligned}=25 .
$$

$\therefore u^{3}+v^{2}$.
$\Rightarrow 1-6 u-16\left(u^{2}+v^{2}\right)=0 \Rightarrow$ Represent circle in W plane.
Fixed points (Problems).

1) Find the fired points.
2) $w=\frac{1}{2}\left(z+\frac{1}{2}\right)$

Abs fixed points $N=f(z)=z$

$$
\begin{aligned}
& \Rightarrow \frac{1}{2}\left(z+\frac{1}{z}\right)=z \Rightarrow \quad z+\frac{1}{z}=2 z \\
& z^{2}+1=2 z^{2} \Rightarrow \\
& \\
& z=z^{Q}-1=0 \\
& z= \pm 1
\end{aligned}
$$

20 $w=\frac{3 z-4}{z-1}$
Ans:

$$
\begin{aligned}
& z=\frac{3 z-4}{z-1} \Rightarrow \begin{array}{l}
z^{2}-z=3 z-4 \\
z^{2}-4 z+4=0 .
\end{array} \quad z=2,2
\end{aligned}
$$

3) $\omega=\frac{z-1}{z+1}$

Ans: $z=\frac{z-1}{z+1} \Rightarrow z^{2}+z=z-1 \Rightarrow \begin{gathered}2 \\ z+1=0\end{gathered}$ $z^{\alpha}=-1 \quad z= \pm c^{0}$
(4) $W=\frac{1}{z-21^{\circ}}$

Ans: $\begin{aligned} & z=\frac{1}{2-2 i} \Rightarrow z^{2}- \\ & z^{2}- \\ & W=\frac{3 i 2+13 .}{2-3 i^{\circ}} \text { frise. }\end{aligned}$

Discuss $\omega=\sin 2$.

$$
\begin{aligned}
& f(z)=\operatorname{sos} z \quad \begin{aligned}
f(\\
f
\end{aligned} \quad=6.05 z \\
& f^{\prime}(z)=\cos z=0 \\
& z=(2 n+1) \pi / 2 \\
& n=0, \pm 1, \pm 2 \ldots
\end{aligned}
$$

the mapping is not conformal where

$$
\begin{aligned}
\cos z & =0 \quad \text { ie } \quad z=(20+1) \sqrt[3]{2}, \quad n=0, \pm 1, \pm 2 \ldots \\
W & =\sin z \\
& =\sin (x+1 y) \\
& =\sin x \cos x y+\cos x \sin t y \\
u+i v & =\sin x \cosh y+1^{\circ} \cos x \sinh y \\
U & =\sin x \cosh y \quad V=\cos x \sinh y
\end{aligned}
$$

1) When $x=c$

$$
u=\operatorname{sinctash} y \quad v=\cos c \sinh y
$$

$$
\cos b y=\frac{u}{\sin x} \quad \sinh y=\frac{V}{\cos c} .
$$

[We know that $\cosh ^{2} y-\sinh ^{4} y=1$]
$\Rightarrow \quad \frac{u^{2}}{\sin ^{d} c}-\frac{v a}{\cos ^{a} c}=1 \quad$ Which is hypanda
2) When $y=k$.

$$
\begin{aligned}
& u=\sin x \cosh k \quad v=\cos x \sinh k . \\
& \sin x=\frac{u}{\cosh k} \quad \cos x=\frac{v}{\sinh k} . \\
& 8^{4} x+\cos ^{2} x=1 \quad \Rightarrow \frac{c^{2}}{\cosh ^{4} x}+\frac{v d}{\sin h^{4} k} \quad \text { ellipse. }
\end{aligned}
$$ plane.

1 Fund and sketch the image of the regiuri
b) Fin $0 \leq x \leq \pi / 2 \quad 0<y<2$ under the transfer. ration $\omega=\sin 2$

Ans:

$$
\begin{aligned}
& W=\sin z \\
& U+i v=\sin (x+c y)=\sin x \cos c y+\cos x \sin e y \\
&=\sin x \cosh y+i \cos x \sinh y
\end{aligned}
$$

$u=\sin x \cosh y$

$$
V=\cos x \sinh y
$$

$$
\begin{array}{ll}
x=0 & y=0 \\
x=\pi / 2 & y=2
\end{array}
$$

$$
x=0 \quad u=\sin 0 \quad V=\sinh y
$$

The mage q the line $x_{=0}$ is $u=0$ (u voxis)

$$
\begin{array}{ll}
\lambda=\pi / 2 \quad u=\operatorname{coshy} \quad v=0 \quad u z 1 . \\
y=0 . \quad u=\sin x \quad v=0 \quad-1 \leq u \leq 1 \\
y=2 \quad \text { Image. } \quad \frac{u^{2}}{(\cosh a)^{2}}+\frac{v^{2}}{(\sin 2)^{2}}=1 \quad \text { ellipse } \\
\frac{u^{2}}{\cosh ^{2} 2}+\frac{v^{2}}{\sinh ^{2} \theta}<1, u>0, v>0
\end{array}
$$

Module -4
Complex Vauable integration
Complex line integrals are of the form $\int_{c} f(z) d z$ on $\oint_{c} f(z) d z$. Here c is called the path of the integral.
Simple curve: A curve is simple of it doesnolintersect self.
Smooth Curve: A curve ' C ' has continuous and nonzero derivatives at each point then ' c ' is called a moth curve.
Contour: A contour is a pucewise Smooth curve.
Simply Connected domain:
A domain D is called Simply connected, if every simple closed curve in 0 encloses only points of D.
Properties of Live integrals

1) Leneculty. $\int_{c}\left[k_{1} f_{1}(z)+k_{2} \cdot \rho_{2}(z) \beta_{2}=k_{1} \int_{c} f_{1}(z) d z+\right.$ $t_{2} \int_{c} e_{\rho_{2}}^{c}(z) d z$.
2) Sense reversal: $\int_{z_{0}}^{z} f(z) d z=-\int_{z}^{c} f(z) d z$
(3) partitioning of path.

$$
\int_{c} f(z) d z=\int_{c_{1}} f(z) d z+\int_{c_{2}} f(z) d z
$$

Evaluation of Reni integrals

Method 1

$$
\begin{aligned}
\int_{a}^{b} f(x) d x= & f(b)-f(a) \\
& \text { Where } f^{\prime}(x)=f(x) .
\end{aligned}
$$

Tho
Let $f(z)$ be an analytic in a simple connected domairin. Then there exist an indefints integral of $f(z)$ ir the domains $D, ~ U i$ an analytic Function $f(z)$ such that $f^{\prime}(z)=f(z)$ in D, and For all paths in D Joining two points z_{0} and z_{1} in D we have.

$$
\int_{z_{0}}^{z_{1}} f(z) d z=f\left(z_{1}\right)-f\left(z_{0}\right)
$$

Sxamop problems

1) Evaluate $\int_{0}^{1+i^{0}} z^{2} d z$.

Ans
(2)
Ans.

$$
\frac{z^{3}}{3} \int_{0}^{1+i^{i}}=\frac{\left(1+i^{0}\right)^{3}}{3}=\frac{-2+21^{0}}{3}=\frac{-2}{3}+\frac{2}{3} i^{i}
$$

$$
\begin{aligned}
\left.\int_{-\pi i^{\circ}[\cos z d z}^{\pi i} \cos \right]-\pi i^{\circ} & =\sin \pi i^{\circ}-\sin \left(-\pi i^{\circ}\right) \\
& =2 \sin \pi i^{\circ}=2 \sinh \pi z
\end{aligned}
$$

Q) Ivaluale $\quad \int_{0}^{1+e^{0}}\left(x^{a}-i y\right) d z \quad$ along
(a) $y=x$
(b) $y=x^{2}$
(a) $\quad y=x \quad d y=d x \quad 2 \rightarrow 0$ to 1

$$
\begin{aligned}
& \int_{0}^{1}\left(x^{2}-i x\right)(d x+i d y] \\
& =\int_{0}^{1}\left(x^{2}-i x\right)\left(1+i^{0}\right) d x=\int_{0}^{1} x^{2}+i x^{2}-i x+x d x \\
& =\left[\frac{x^{3}}{3}+i \frac{x^{3}}{3}-i \frac{x^{2}}{2}+\left.\frac{x^{3}}{2}\right|_{0} ^{1}\right. \\
& =\frac{1}{3}+\frac{i^{0}}{3}-\frac{i^{0}}{2}+\frac{1}{2}=\frac{5}{6}-\frac{1}{6} 10
\end{aligned}
$$

(b) Along $y=x^{Q}$.

$$
\begin{aligned}
& \quad d y=2 x d x \quad x=0+01 \\
& \int_{0}^{1}\left(x^{2}-i x^{2}\right)(d x+i 2 x d x) . \\
& \int_{0}^{1}\left(x^{2}-i x^{2}\right)(1+2 i x) d x \\
& \int_{0}^{1} x^{2}+2 i^{\circ} x^{3}-i x^{2}+2 x^{3} d x . \\
& =\frac{x^{3}}{3}+2 i \frac{x^{4}}{4}-i \frac{x^{3}}{3}+\left.\frac{2 x^{4}}{4}\right|_{0} ^{1} \\
& =\frac{1}{3}+\frac{i^{0}}{2}-i^{0} / 3+\frac{1}{2}=\frac{5}{6}+\frac{1}{6} i^{0} \text { Botb }
\end{aligned}
$$

3) Evaluble $\int_{C} z^{9} d z$ where C is the levi are defferent. $x=2 y$ मिक्m $(0,0)$ to $(2,1)$.
Anp $\quad f(z)=z^{Q}=(x+1 y)^{2}=x^{2}-y^{2}+12 x y$.

$$
\begin{aligned}
& x=2 y \quad d x=2 d y \\
& f(z)=(2 y)^{2}-y^{2}+i 2 x y \cdot y \\
&= 3 y^{2}+4 y^{2}, 0 \\
& d z=d x+i d y=2 d y+1 d y \\
&=(2+i) d y \\
& \int_{c}^{1} f(z) d z-\int_{0}^{1}\left(3 y^{2}+4 y^{2} i^{0}\right)(8+i) d y \\
&=\int_{0}^{1} 6 y^{2}+3 y^{2} i^{\circ}+8 y^{2} 1^{0}-4 y^{2} d y \\
&=\left[\frac{6 y^{3}}{3}+\frac{3 y^{3}}{3} i^{0}+\frac{8 y^{3}}{3} 1^{0}-\left.\frac{4 y^{3}}{3}\right|_{0} ^{1}\right. \\
&=2+i^{0}+8 / 31^{0}-4 / 3 . \\
&=\frac{2}{3}+\frac{11}{3} 1^{0}
\end{aligned}
$$

Method 2 second evaluation method analytic Tines method is not restrected to complex Junction.
hel- C be a percewise smooth path represented b) $z=z(t)$ where $a s t \leq b$. Let. $f(z)$ be. contenuow function on c. Then

$$
\int_{c} f(z) d z=\int_{c}^{b} f(z(t)) \dot{x}(t) d t-
$$

$$
\left\{\dot{z}(t) \frac{d z}{d t} .\right.
$$

Problem
1 Evaluate $\int \frac{d z}{2}$ Where C is the unset circle ri anticlocliwese direction
C vi the unit circle is parametric representation

$$
z(t)=e^{1 t} \quad 0 \leq t \leq 2 \pi
$$

$$
\dot{Z}(t)=e^{v} e^{(t}
$$

$$
f(z)=\frac{1}{z} \quad \cdot f(z(t))=\frac{1}{e^{l t}}=e^{-t(-}
$$

$$
\int_{c} f(z) d z=\int_{a}^{b} f(z(t)) \dot{z}(t) d t
$$

c

$$
=\int_{0}^{2 \pi} e^{-1 t} \cdot i e^{1 t} d t=\int_{0}^{2 \pi} i^{0} d t \cdot 2 \pi i^{0}
$$

Result:

$$
\int_{\pi=1} \frac{d z}{z}=2 \pi 0^{\circ}
$$

2 evaluate: $\int_{c} e^{z} d z$ where C w the shorterpath from πi° to $2 \pi i^{\circ}$
$A \Delta \int_{\pi i^{\circ}}^{2 \pi i^{\circ}} e^{z} d z=\left(e^{2}\right]_{\pi i^{\circ}}^{2 \pi i^{\circ}}=e^{2 \pi i^{\circ}}-e^{\pi c^{\circ}}=e^{\pi i^{\circ}}\left(e^{\pi t^{\circ}}-1\right)$
3) Evaluate $\int_{c} z^{2} d z$, where cis given by leno along the real axis From $(0,0)$ to $(2,0)$ and then vertically to $(2,1)$
Ans
Take the path from $(0,0)$ to $(2,0)$ ard C, and path from $(Q, 0)$ to $(2,1)$ as C_{1}

$$
\int_{c} z^{a} d z=\int_{c_{1}} x^{a} d z+\int_{c_{2}} x^{9} d z
$$

Q $\quad y=0 \quad d y=0 \quad z^{2}=x^{2}-y^{2}+12 x y=x^{2}$

$$
\begin{aligned}
& \left.\int_{C_{1}} z^{2} d z=\int_{0}^{2} x^{8} d x-\frac{x^{3}}{3}\right\}^{2}=8 / 5 \\
& C_{2} \quad x=2 \quad d x=0 \quad z^{2}=4-y^{2}+104 y \\
& \int_{C Q} z^{2} d z=\quad \int_{0}^{1}\left(4-y^{2}+(4 y) i d y=0 \quad 0 \quad \begin{array}{l}
\left.y+\frac{y^{3}}{3}+i 4 y^{2}\right]^{2}
\end{array}\right]_{0}^{1} \\
& =\left(4-\frac{1}{3}+2 i\right)^{\circ}{ }^{\circ} \\
& \int_{c} z^{2} d z=\frac{8}{3}+\frac{11}{3} i^{i-2}=\frac{2}{3}+\frac{11}{3} i^{\circ}
\end{aligned}
$$

(4) Evaluate $\int_{c} \bar{z} d z$ where c is parametrised by $z(t)=3 t+i t^{2},-1 \leq t \leq 4$
Ans

$$
\begin{aligned}
\frac{z}{z} & =3 t+i t^{2} \\
\int_{c} \bar{z} d z & =\int_{c}\left(3 t-i t^{2}\right)(3+2 i t) d t- \\
& =\int_{C} 9 t+6 t^{2} t^{2}-3 i^{\circ} t^{2}+2 t^{5} d t \\
& \left.=\frac{9 t 2}{2}+9 i \frac{i}{3}+\frac{2 t^{2}}{4}\right)_{1}^{4} \\
& =8+12+64 i^{\circ}+128-\left(9 / 2-i^{\circ}+1 / 2\right) \\
& =200+64 i^{\circ}-5+i^{\circ}=195+651^{\circ}
\end{aligned}
$$

(3) Evaluate $\int_{0}^{1+z(} f(x) d z$ when $f(x)=\operatorname{Rec}(z)$ (4)
(1) along a straight line Prom 0 to $1+2 i$

A $k \times$

(ii) along the real arts from 0101 and thin along a line parallel to imaginary axis Prom $z=1$ to $z=1+21^{\circ}$

Ans
(1) 0 to $1+2 i^{\circ}$

$$
\begin{aligned}
& x_{1}, y_{1} \rightarrow(0,0) \quad x_{2}, y_{2} \rightarrow 1,2 . \\
& \frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}} \quad \Rightarrow \frac{x-0}{1-0}=\frac{y-0}{2-0} \\
& x \rightarrow 0+0, \quad d z=d x+1 d y=d x+1 \cdot 2 d x \\
&=(1+2 i) d x . \\
& \int_{c} \operatorname{Re}(z) d z=\int_{0}^{1} x(1+2 i) d x\left.=(1+21) \frac{x^{2}}{2}\right]_{0}^{1} \\
&=\frac{1}{2}+10
\end{aligned}
$$

(11)

$$
\xrightarrow[c_{1}]{{ }_{c z}} \quad \int_{c} f(z) d z=\int_{c_{1}} f(z) d z+\int_{c_{2}} f(z) d z
$$

Along $c_{1} \quad y=0 \quad d y=0 \quad d z=d x \quad x \rightarrow 0$ to 1

$$
\int_{c_{1}} f(z) d z=\int_{0}^{1} x d x=\frac{x^{2}}{2} \int_{0}^{1}=\frac{1}{2}
$$

$A \log C_{2} \quad x=1 \quad d x=0 \quad d z=e d y \quad 4 \rightarrow 0$ to 2

$$
\begin{aligned}
& \int_{2} \cdot f(z) d z=\int_{0}^{2} x d z=\int_{0}^{2} 1 \cdot i d y=(q u)_{0}^{2}=20^{0} \\
& \int_{c} f(z) d z=\int_{c_{1}} f(z) d z+\int_{c_{2}} f\left(z d z=\frac{1+2}{2}+2 i\right.
\end{aligned}
$$

Evaluale $\int_{0}^{2+i}(i)^{2} d z$ aling the luns $y=x / 2$
Ans

$$
\begin{aligned}
& \bar{Z}=x-i y \quad(\bar{z})^{2}:(x-i y)^{2}=x^{2}-y^{2}-i 2 x y \\
& y=x / 2 \quad x=2 y \quad d x=2 d y \quad d z=d x+1 d y \\
& y \rightarrow 0+0,=2 d y+i d y \\
& \int_{0}^{1}\left((2 y)^{2}-y^{2}-i 2 \times 24 x y\right)(2+i) d y \quad=\left(2+i^{\circ}\right) d y \\
& \int_{0}^{1}\left(3 y^{2}-4 y^{2}(0)(2+i) d y\right. \\
&=\int_{0}^{1} 6 y^{2}+3 y^{2} i^{\circ}-8 y^{2} i^{\circ}+4 y^{2} d y \\
& \int_{0}^{1} 10 y^{2}-5 y^{2} i^{\circ} d y\left.=10 \frac{y^{3}}{3}-\frac{5 y^{3}}{3} i^{\circ}\right]_{0}^{1} \\
&=\frac{10}{3}-\frac{5}{3} i^{\circ}
\end{aligned}
$$

(T). Evaluale $\oint_{c} f(z) d z, f(z)=\operatorname{Rec} \overline{\left.\overline{z^{2}}\right) \quad \text { q }}$ the boundan c of the Square with vertices $\left(0,0^{\circ}, 1+i^{\circ}, 1\right)$ clochwise.

$$
\begin{gathered}
\frac{\int_{c_{1}}^{c_{1}} \int_{c_{4}}^{c_{1} 0}}{c_{3}} f(z) d z=\int_{c_{1}} f(z) d z+\int_{c_{2}} f(z) d x+\int_{c_{3}} f(z) d z+\int_{c_{4}} f(z) d z \\
\operatorname{Re}\left(z^{2}\right)=x^{2}-y^{2}
\end{gathered}
$$

$$
\begin{aligned}
& z^{2}=x^{2}-y^{2}+12 x y \quad \operatorname{Re}\left(z^{2}\right)=x^{2}-y^{2} \\
& d z=1 d y
\end{aligned}
$$

c_{1}

Cauchy integral theorem closed path ' C ' in D $\quad \oint f(z) d z=0$

* If $f(z)$ is analytic in a^{c} simply connected domeurs D others the integral of $f(z)$ is modeperclens \& path in D.
Poms
()

$$
\begin{aligned}
& \oint_{c} \frac{1}{z^{\alpha}+1} d z \quad c:|z|=\frac{1}{z} \\
& z^{Q}+1=0 \Rightarrow z^{2}=-1 \\
& z= \pm 10 .
\end{aligned}
$$

$\therefore f(z)$ is not analytic at $z=+i^{\circ}$ and $z=-e^{\circ}$
$|z|=\frac{1}{2} \quad z=1^{\circ} \quad|z|=1>\frac{1}{2} \quad$ outside c

$$
z=-e^{\circ} \quad|z|=1>\frac{1}{2} \quad \text { outside c. }
$$

$\therefore 1^{\circ},-1^{\circ}$ hes outside c
$\therefore f(z)$ analytic at at pts inside $|z|=\frac{1}{a}$
\therefore By Cauchy in iegral the $\oint_{L} f(z) d z=0$

$$
\oint_{c} \frac{1}{z^{a}+1} d z=0 .
$$

(2) Cauchy integral formula

Let. $f(z)$ be an analytic function in a Simply connected domain D, then for any point zo MD and any closed path C in D that encluses 20 $\phi \frac{f(z)}{-20} d z=2 \pi i^{\circ} f\left(z_{0}\right)$ 1 integration taken in anti clockwise arsed

Also

$$
\begin{aligned}
& \oint_{c} \frac{f(z) d z}{\left(z-z_{0}\right)^{2}}=2 \pi t^{\circ} f^{\prime}\left(z_{0}\right) \\
& \oint_{c} \frac{f(z)}{\left(z-z_{0}\right)^{3}} d z=\frac{2 \pi i}{a!} f^{i}\left(z_{0}\right)
\end{aligned}
$$

In general $\oint_{c} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z=\frac{2 \pi i^{0}}{(n-1) \text { ! } f^{(n-1)}\left(x_{0}\right)}$
Pboms
1 Evaluale $\oint_{c .} \frac{\cos \pi z}{z-2} d z$ over $c \quad|z|=3$
Ans $\quad z-2=0 \Rightarrow z=2 \quad$ surgular pounc-
geven $|z|=3 \quad|2| \leq 3$ les unside c.
By Cauchy integral - Sormula

$$
\begin{aligned}
\int_{c} \frac{f(z)}{z-\pi_{0}} d z= & 2 \pi i f\left(z_{0}\right) \\
& =2 \pi i x) \\
& =2 \pi i
\end{aligned}
$$

Here $f(z)=\cos \pi z$

$$
\begin{aligned}
f\left(z_{0}\right)=f(2) & =\cos 2 \pi \\
& =1
\end{aligned}
$$

2

$$
\oint_{c} \frac{e^{z}}{z+1} d z
$$

(i) $\quad c:|z|=Q$
(11). $C:|2|=\frac{1}{\alpha}$
(ni) $c:|2+1|=1 / 2$
$z+1=0 \Rightarrow z=-1$ singular point -
(1). $|2|=2,|-1| \leq 2$ instcle c.

By C.I-f $\int \frac{f(z)}{z-2_{0}} d z=2 \pi i f(z 0$

$$
\begin{array}{rlr}
\int \frac{e^{z}}{z+1} d z=2 \pi i f(-1) & f(z)=e^{z} \\
& =2 \pi 1^{0} & f(-1)=e^{-1}
\end{array}
$$

(il) $|z|=\frac{1}{2} \quad|-1|>4 / 2$ outside c.
By c.I.T $\oint_{c} f(z) d z=0 \Rightarrow \oint_{t} \frac{e^{z}}{z+1} d z=0$
(m) $|2+1|=1 / 2$.

$$
1-1+11=0-y_{2} \text { monds }
$$

 $|2-1|=2$
Ans $\quad x-2=0 \Rightarrow \quad z+2$ Bangusar pl.

$$
|2-1|-2 \Rightarrow|a-1|<2 \text { unoids } c
$$

By.Cit

$$
\begin{array}{rlrl}
\int \frac{z+2}{2+2} d z & =2 \pi i f(a) \quad & f(2 x & =z+2 \\
& =2 \pi t^{\circ} \times 4=8 n & f(a) & =a+2 \\
& =4
\end{array}
$$

(7) $\oint_{c} \frac{8 m 2 z}{z^{4}} d z$

$$
c:|z|=1
$$

$z=0$ is a ornguier pt if onder 4
(5). $\oint_{C} \frac{z^{2}+5 z+3}{(z-2)^{2}} d z$

$$
c:|z|=3
$$

$(z-2)^{2}=0 \Rightarrow z=2$ pole of osder Q
By.C.I.F $\quad \frac{f(z)}{(2-2)^{2}}=2 \pi \cdot f^{2}\left(z_{0}\right)$

$$
f(z)=z^{A}+52+3
$$

$$
=2 \pi f^{\prime} f^{\prime}(g) \quad f(z)=2,5<z=2
$$

$$
=2 \pi e \times 9 \quad+163=2 \times 2+5
$$

$$
\begin{aligned}
& |z|=1 \Rightarrow 101<1 \text { mseds } C \\
& \left.\therefore B y c \cdot i \cdot F \quad \oint_{c} \frac{8 i n a z d z}{z^{4}}=\frac{2 \pi i}{3!}=10\right) \\
& =\frac{2 \pi y^{\circ}}{6} y-8 \cos \pi a_{0} \quad f(z)=\sin a z \\
& f(z)=2 \cos 2 z \\
& =\frac{-8 \pi 0}{3} \\
& f^{4}\left(\frac{1}{2}(z)=-4 \cos 3 z\right. \\
& f^{1 /}(z)=-\cos : 2
\end{aligned}
$$

6

$$
\begin{aligned}
& \oint_{2} \frac{e^{x}}{2(1-)^{3}} d=\quad|x|=y_{2} \\
& z(1-z)^{3}=0 \quad \Rightarrow z=00^{8} x=1 \quad \text { fordat } 3
\end{aligned}
$$

$$
|2|=y_{2} \Rightarrow \quad|0|+y_{2} \text { unside } c
$$

$$
11>1 / 2 \text { oul side }
$$

$$
\oint_{c} \frac{e^{2}}{z(1-z)^{3}} d z=\oint_{i} \frac{e^{2}(1-z)^{3}}{z} d z=2 \pi i f(0) .
$$

$$
=2 \pi i \quad \quad f(z) \cdot \frac{e^{z}}{(1-z)^{3}}
$$

(i) $\oint_{L} \frac{z^{2}+2 z+3}{z^{2}-1} d z \quad c:|z-1|=1$ $f(0)=\frac{1}{1}=$

$$
\begin{aligned}
& \begin{aligned}
& z^{a}-1=0 \Rightarrow \Rightarrow z= \pm 1 . \\
&(z-1)=1 \Rightarrow|H|<1 \quad \text { inside } c \\
&|-1-1|>1 \text { ous sidec } \\
& \oint_{L} \frac{z^{2}+2 z+3}{(z+1)(z-1)} d z=\oint_{i} \frac{z^{8}+2 z+3 \mid z+1}{z+1} d z \\
&=2 \pi i f(1) \quad f(z)=z+2 z+3 \\
&=2 \pi i \times 3 \quad \\
&=6 \pi i \quad f(1)=\frac{6}{2} \quad
\end{aligned}
\end{aligned}
$$

(8). Using Cauchy's formula $\oint_{\left(\cdot \frac{z+1}{z^{4}+2 z^{3}}\right.}^{d z}$

An) $\quad z^{4}+2: z^{3}=0 \Rightarrow z^{3}(z+2 i)=0 \Rightarrow z=0$ i, orda. 3

$$
z=-2 i^{\prime}
$$

$|2|=1 \quad$ loler msidec.

$$
|-2 i|>1 \text { Outsidee. }
$$

$$
\oint_{c} \frac{z+1}{z^{4}+2 i 2^{3}} d z=\oint_{c}^{|-2 i| z 1} \frac{\text { outsidec }}{z+1 \mid z+2 i} d z \cdot \frac{2 \pi i^{\prime}}{\frac{3}{3}} f^{\prime \prime}(-21)
$$

(9) Evaluate
$\oint_{c} \frac{d x}{z-31^{\circ}}, \quad C$, the crock e $|z|=$ II
counter clockwise
$\Rightarrow \quad z-31^{\circ}=0 \Rightarrow z=3 i^{\circ}$ singularity
$|z|=\pi \Rightarrow \mid 3,1=3 \nless \pi \quad$ inside c.
$\therefore B y$ cauchy integral formula

$$
\begin{aligned}
\oint_{c} \frac{d z}{z-3 i} & =2 \pi i^{\circ} f(3 i) \\
& =2 \pi i^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& f(z)=1 \\
& f\left(3 a_{i}\right)=1
\end{aligned}
$$

10
Evaluate $\oint_{c} \frac{\cos \pi}{z^{2}-1}$ where c is the rectangle
with vertices $2 \pm i^{\circ},-2 \pm 0^{\circ}$

$$
\begin{aligned}
& \rightarrow \quad z^{2}-1=0 \quad \Rightarrow \quad z^{2}=1 \\
& z= \pm 1^{\circ}
\end{aligned}
$$

$z=1$ inside c

$$
2=-1 \text { inside } C
$$

$$
\begin{aligned}
\frac{1}{z^{2}-1}=\frac{1}{(z+1)(z-1)} & =\frac{A}{z+1}+\frac{B}{z-1} \\
& =\frac{A(z-1)+B(z+1}{(z+1)(z-1)}
\end{aligned}
$$

$$
\begin{aligned}
& A(z-1)+B(z+1)=1 \\
& Z=1 \quad \Rightarrow \quad 2 B=1 \quad B=1 / 2 \\
& 2=-1 \quad-2 A=1 \quad A=-1 / 2
\end{aligned}
$$

$$
\begin{aligned}
-2 A & =1 \quad 4=-y_{2} \\
\oint_{c} \frac{\cos \pi z}{z^{2}-1} & =-y_{2} \phi \frac{\cos \pi z d z}{z+1}+\frac{1}{2}-\frac{\cos \pi d z}{z-1} \\
& =-\frac{1}{2} 2 \pi 1^{0} f(-1)+\frac{1}{2} \alpha \pi c^{\circ} f(1) \\
& =-\pi i^{\circ} x-1+\pi 1^{0}-1=0
\end{aligned}
$$

$$
\begin{aligned}
& R=1 \quad|1|<\pi \quad \text { logide } c, \quad z=3 \quad 13 \mid<\pi \text { enside } c . \\
& \frac{1}{(z-1)(z-3)}=\frac{4}{z-1}+\frac{B}{z-3} \\
& =A(z-3)+B(x-1) \\
& A(z 3)+B(z-1)=1 \\
& Z=3 \quad 2 B=1 \quad B=Y 2 . \\
& z=1 \quad-2 A=1 \quad A=-y_{2} \\
& \frac{\cos \pi z^{2}+\sin \pi z^{2}}{(z-1)(z-3)}=\frac{-1}{2} \frac{\cos n z^{2}+\sin \pi z^{2}}{z-1}+\frac{1}{2} \frac{\cos \pi 1 z^{2}+\sin \pi z^{2}}{z-3} \\
& \int_{c} \frac{\cos n x^{2}+\sin \pi z^{2}}{(z-1)(z-3)} d z=-1 / 2 \int \frac{\cos \pi z^{2}+\sin \pi z^{\circ}}{2-1} d z+\frac{1}{a} \int \frac{\cos \pi z^{4}+\sin \pi z^{2}}{z-3} d z \\
& (z-1)(z-3) \quad=-\frac{1}{2} 2 \pi 1^{\circ} f(1)+\frac{1}{2} 2 \pi 1^{\circ}-P(3) \\
& \begin{array}{l}
\left.=-\frac{1}{2} 2 \pi i^{\circ} f(1)+\frac{1}{2} 2 \pi i^{\circ}-\operatorname{ses}\right) \\
-\pi 1^{\circ}(\cos n+8 m n)+\frac{1}{2}[\cos 9 \pi+\sin \pi]
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =\pi l^{\circ}+\pi 1^{\circ}=0 \\
& \rightarrow \quad z=0,1,2 \quad z=0 \quad \text { insidec } \quad z=1 \quad 1113 \operatorname{linside} c \\
& \frac{1}{2(2-1)(2-2)}=\frac{A}{2}+\frac{B}{2-1}+\frac{C}{z-Q} \quad \text { ortving } \quad A=42 B=-1 \quad C=4 / 2 \\
& \frac{6}{6} \frac{4-3 z}{2(z-1 x z-2)}=\frac{1}{2} \int \frac{4-3 z}{z} d z-\int \frac{4-5 z}{z-1} d z+\frac{1}{2} \int \frac{4 z}{z-z} d z \\
& \text { c } 2(z-1)(z-2)=\frac{1}{2} \times 2 \pi 1^{\circ} \times 4-201^{\circ} \times 1+-\frac{1}{2} \text { an } 1^{\circ} \times-2 \\
& =0
\end{aligned}
$$

$$
\text { Evaluate } \quad \oint_{c} \quad \begin{aligned}
& 4-3 z \\
& 2(z) \cos -2)
\end{aligned}
$$

$\operatorname{C}:|z|=3 / z$.

- $2=0,1,2 \quad 8$ magular pts
$z=0$ mosidec
2-1 unsede c

$$
\oint_{c} \frac{4-3 z / z-2}{2(z+3} d z
$$

$z=2$ outside C

$$
\begin{aligned}
& \frac{1}{z(z-1)}=\frac{A}{z}+\frac{B}{z-1}=\frac{A(z-1)+B z}{z(z-1)} \\
& 1=A(z-1)+B Z \quad Z=0 \quad A=-1 \\
& \frac{1}{2(z-1)}=\frac{-1}{z}+\frac{1}{2-1} \\
& 2=1 \quad B=1 \\
& \text { ff } \frac{4-3 z / z-2}{2(z-1)} d z=-\int_{c} \frac{4-3 z / z \cdot 2}{z}+\int_{c} \frac{\{-3 z / z-2}{z-1} d z \\
& f_{\text {R }}=\frac{4-32}{2} \\
& =-2 \pi i^{\circ} P(0)+2 \pi 0^{\circ} f(1) \\
& =-2 \pi i^{\circ} x-2+2 \pi \pi^{\circ} x-1 \\
& f(0) \frac{4}{2}=-2 \\
& =4 \pi t^{\circ}-2 \pi 1^{\circ}=2 \pi 1^{\circ} \\
& f(1)=\frac{1}{-1}=1
\end{aligned}
$$

$$
\begin{aligned}
z^{3}-z=0 & \Rightarrow z\left(z^{2}-1\right)=0 \\
& \Rightarrow z(z+1)(z-1)=0 \Rightarrow z=0,-1,1 \text { singuian } p z
\end{aligned}
$$

(1) $C: 121=1 / 2$
$Z=0$ unside $c \quad z=1$ oulsidec $\quad z=1$ oussids c

$$
\begin{array}{rlrl}
\oint_{c} \frac{3 z-1}{z(z-1)(z+1)} d z & =\oint_{c} \frac{3 z-1 /(z-1)(z+1)}{z} d z \\
& =2 \pi 1^{0} f(0) & f(z)=3 z+1 / z-1)(z+0) \\
& =2 \pi 1^{0} & & f(0)=\frac{1}{-1 x)}=
\end{array}
$$

(1) $|z|=2$
$z=0$ unside C
$z=-1$ mside $c \quad z=1$ mensts $<$

$$
\begin{aligned}
& \text { 1 } \\
& 2(z-126 z+1) \\
& \frac{A}{2}+\frac{B}{z-1}+\frac{C}{2+1}=\frac{A(2+2(2+1)+52(20)+\cot (2)}{2(2+1)=14} \\
& 1=42-1)(x+17+2(2+1)+(2 C z+) \\
& z=0 \quad 1=-A \quad A=-1 \\
& Z=1 \quad \because 2 B \quad B=42 \\
& z=-1 \quad 1=a C \quad C=12 \\
& \int \frac{3 z-1}{d} d z=-\int \frac{3 z-1}{x} d z+\frac{1}{2} \int \frac{3 z-1}{z-1} d z+\frac{1}{2} \int \frac{3-12}{x+1} d z \\
& \text { Pはな } 3 \text { - } \\
& \left.\int_{(1)}^{x-1}=-3 \pi\right)^{3} x-1+\pi i^{\circ} \times 2+\pi 1^{0} \times-4 \\
& \text { ? }(1)=2 \\
& f(-1)=-4 \\
& =-221 L^{2}+3(0)+\frac{1}{2}-2 \pi i^{2}(1)+\frac{1}{2} \text { an } 3^{\circ} f(-4) \\
& =0 \\
& 15-\int_{c} \frac{z^{\hat{a}}}{z^{2}-1} d z \\
& \text { C. }|2-1-0|=\pi / 2 \\
& \rightarrow \quad z^{2}-1=0 \quad z= \pm 1 \\
& \text { c. }\left|2-1-0^{0}\right|= \\
& z=1 \quad|1-1-1|=1-1 \mid=1<5 / 2 \text { unside. } \\
& z=-1\left|-\left|-\left|-\left.\right|^{2}\right|=\left|-2-x^{0}\right| \times \pi / 2 \text { out sede } C\right.\right. \\
& \int_{c}^{\frac{z^{2}}{(z+1)(z-1)}} d z=\int_{c} \frac{z^{2} / z+1}{z-1} d z \\
& =2 \pi t^{\circ}+10 \\
& =2 \pi^{6} \times \frac{1}{2} \\
& \cdots \pi 1^{\circ} \\
& f(z)=x^{2}(z+1 \\
& \text { f(1) }=\frac{1}{2}
\end{aligned}
$$

Taylar Seruss Maclanion Senes
The taylor seress of an analytic ferxtion) fezz unside a cixcle with center z_{D} \&) $\quad \int(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ where $a_{n}=\frac{1}{n!} f^{(n)}\left(z z_{0}\right.$)

$$
\text { Or } \quad f(z)=f^{n}(z)+\frac{\left(z, z_{0}\right)}{1!} \cdot f^{\prime}\left(z_{0}\right)+\frac{\left(z \cdot z_{0}\right)^{3}}{2!} f^{\prime}\left(z_{0}\right) \cdots
$$

If $z_{0}=0 \quad$ then Tayion Seress
$f(z):-f(0)+\frac{z}{1!} f^{\prime}(0)+\frac{z^{2}}{2!} f^{\prime \prime}(0) \ldots$ is called Maclarin serces
Note:

$$
\begin{aligned}
&(1+z)^{-1}=1-z+z^{2} \cdots \quad z_{n=0}^{\infty}(-1)^{n} z^{n} \\
&(1-z)^{-1}=1+z+z^{2} \cdots=\sum_{n=0}^{\infty} z^{n} \\
&(1+z)^{-2}=1-2 z+3 z^{2} \quad\left.=\sum_{n=0}^{\infty}(-1)^{n} n+1\right) z^{n} \\
&(1-z)^{-2}=1+2 z+\cdots \quad=\sum_{n=0}^{\infty}(n+1) z^{n}
\end{aligned}
$$

These expansions are vald if kke
Pbons
1 Expand $\quad f(z)=\frac{1}{z+2}$ at $z=1$ as a taylor series

$$
\Rightarrow \begin{aligned}
\frac{1}{z+2}-\frac{1}{z+1+3} & =\frac{1}{3\left[1+\frac{z-1}{3}\right]}=\frac{1}{3}\left[1+\frac{z-1}{3}\right]^{-1} \\
& =\frac{1}{3}\left[1-\left(\frac{z-1}{3}\right)+\left(\frac{z-1}{3}\right)^{2}\right] \\
& =\frac{1}{3} \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{z-1}{3}\right)^{n}
\end{aligned}
$$

Fond the faylor sereos $f(z)=\frac{1}{z^{2}-z-6}$ about $z=-1$

$$
\frac{1}{z^{a}-z-6}=\frac{1}{(z-3)(2+2)}=\frac{A}{z-3}+\frac{B}{z+2}
$$

$$
\begin{aligned}
& =A(z+2)+B(z-3) \\
& (z-3)(x+2) \\
& 1=A(z+2)+B(z-3) \\
& Z=3 \quad 5 A=1 \quad A=1 / 5 \\
& 2=-2 \quad-5 B=1 \quad B=-45 \\
& \left.\frac{1}{z a z-6}=\frac{1 / 5}{z-3}-\frac{1 / 5}{z+2}-\frac{1}{\frac{5}{2}}-\frac{1}{z+1-4}-\frac{1}{1+(z+1}\right] \\
& =\frac{1}{5}\left[\frac{1}{-4\left[1-\frac{(z+1}{4}\right)}-\frac{1}{1+(z+1)}\right] \\
& =\frac{1}{5}\left\{\frac{1}{-4}\left[1-\left(\frac{z+1}{4}\right)^{-1}\right]-(1+(z+1)]^{-1}\right. \\
& =-\frac{1}{20}\left\{1+\frac{z+1}{4}+\left(\frac{z+1}{4}\right)^{2}+\cdots\right]-\frac{1}{5}\left\{1-(z+1)+(z+1)^{2}\right. \\
& =-\frac{1}{20} \sum_{n=0}^{\infty}\left(\frac{(6)+1}{4}\right)^{n}-\frac{1}{5} \sum_{n=0}^{\infty}(-1)^{n}(z+1)^{n}
\end{aligned}
$$

3) Frod Maclurian serves of $f(z)=\sin z$

$$
\begin{aligned}
& \cdots \quad f(z)=f(0)+\frac{z}{11} f^{\prime}(0)+\frac{z^{2}}{\partial)} f^{\prime \prime}(0)+\cdots \\
& =\frac{z}{11} \times 1+\frac{z 3}{3} x-1+\frac{z 5}{5!} \times 1 \cdots \\
& =\frac{z_{0}}{1!}-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}+\cdots \\
& f(z)=8 m z \\
& f(0)=0 \\
& f^{\prime}(2)=\cos z, f^{\prime}(0)=1 \\
& f^{\prime \prime}(z)=-8 n z \quad f^{\prime \prime}(0)=0 \\
& =\sum_{n=0}^{\infty}\left(-1^{n} z^{n+1}\right. \\
& f^{\prime \prime \prime}(z)=-\cos z f^{\prime \prime}(0)=-6
\end{aligned}
$$

 abod $<$ " ${ }^{*} / 4$

$$
\begin{aligned}
& f^{\prime}(z) \text { ous } x \\
& f^{\prime \prime}(z)=-\sin 2 \\
& f^{1}(8 / a)=10 \times 8 / 4-1 / 2 \\
& \int^{\prime \prime}(\mathrm{ct1} / 4)=-\left.\cos 4\right|_{a}+4 \sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}+2 \pi / 41 / 2+\left(\frac{2 \pi / 4}{2}\right)^{9}, 1 / 23 \\
& =\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
1, & \text { र- } 1 / 4 & (2-\pi / 4)^{2} \\
14 & 2
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
\rightarrow \frac{1}{1+z^{2}}=\left(1+z^{2}\right)^{n} & =1-z^{2}+z^{4}+ \\
& =\lim _{n=0}^{\infty}(1) 7^{2 n}
\end{aligned}
$$

Some importom Taylos soves (Motlaurw bemss)

1. Coporrethi Serno's

$$
\frac{1}{1-2}=\sum_{b=0}^{\infty} z^{n}+1+z+z^{2}
$$

(2) Conponenteal Sereos

$$
e^{2}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}=1+z+z^{4}+
$$

(3) Tregnomolric Serees

$$
\begin{aligned}
& \sin z=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{(22+1)}=2-\frac{z^{3}}{31}+\frac{z^{5}}{51} \\
& \cos z=\sum_{n 0}^{\infty}(-1)^{\prime} \frac{z^{2}}{2 n}+\frac{z^{2}}{2}
\end{aligned}
$$

(4) Hyperbolic Serece

$$
\begin{aligned}
& \operatorname{Sinh} z=\sum_{n=0}^{\infty} \frac{z^{a n+1}}{(2 n+1)}=z+\frac{z^{3}}{3!}+\frac{z^{5}}{5}+\cdots \\
& \cosh z=\sum_{n=0}^{\infty} \frac{z^{a n}}{(2 n)}=1+\frac{z^{2}}{2!}+\frac{z^{4}}{4!}+\cdots
\end{aligned}
$$

(5) Logartbemic serves

$$
\begin{aligned}
\operatorname{Ln}(1+z) & =z-\frac{z^{2}}{2}+\frac{z^{3}}{3} \cdots \\
-\operatorname{Ln}(1-z) & =z+\frac{z^{2}}{2}+\frac{z^{3}}{3} \cdots \\
\operatorname{Ln} \frac{1+z}{1-z} & =2\left[z+\frac{z^{3}}{3}+\frac{z^{5}}{5} \cdots\right]
\end{aligned}
$$

Module 5 - Residue integration
Laurent Series
Laurent Series generalise Taylor sorus. If in an appleation, wee want to develop a function $f(2)$ uni powers of $z-z_{0}$ when $f(z)$ is singular of To, we carnot use a Taylor sores Instead we use a new kind of series, called Laurent series consisting of positive integer powers of $z \cdot z_{0}$ (and a conilont) ar well an negative integer powers of $z-z_{0}$.

$$
\text { le } \begin{aligned}
f(z) & =\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}} \\
& =a_{0}+a_{1}\left(z-z_{0}\right)+\cdots+\frac{b_{1}}{z-z_{0}}+\frac{b_{2}}{\left(z-z_{0}\right)^{2}}+\cdots
\end{aligned}
$$

Proms
1 Expand $f(z)=\frac{1}{z-z^{3}}$ in Laurent Series for.
the regin $|<|z+1|<2$

$$
1<|z+1|<2 \Longrightarrow\left|<|z+1| \quad \text { u } \quad \frac{1}{|z+1|}<1\right.
$$

$$
\begin{aligned}
f(z)=\frac{1}{z-z^{3}} & =\frac{1}{z\left(1-z^{2}\right)}=\frac{1}{z(1+z)(1-z)} \\
\frac{1}{z\left(1+z^{0}\right)(1-z)} & =\frac{A}{z}+\frac{B}{1+z}+\frac{C}{1-z} \\
& -\frac{A(1+z)(1-z)+B z(1-z)+C z(1+z)}{}
\end{aligned}
$$

$$
2(1+2)(1-z)
$$

$$
1=A(1+z)(1-z)+B Z(1-z)+C z(1+z)
$$

Solving we get $A=+1 \quad B=-1 / 2 \quad C=1 / 2$.
2.

Kxpand $f(z)=\frac{z}{(z+1)(z+2)}$ in Lourent serus

$$
\begin{aligned}
& z=-2 \\
& f(z)=\frac{z}{(z+1)(z+2)}=\frac{A}{z+1}+\frac{B}{z+2}=\frac{A(z+2)+B(z+1)}{(z+1)(z+2)} \\
&-z
\end{aligned}
$$

$$
A=-1 \quad B=2
$$

$$
f(z)=-\frac{1}{z+1}+\frac{2}{z+2}
$$

$$
=\frac{1}{(2+2)-1}+\frac{2}{2+2}
$$

$$
\begin{aligned}
& =\frac{-1}{-1+(z+2)}+\frac{a}{z+2)} \\
& =\frac{1}{1-(z+2)^{+}+\frac{2}{z+2} \Rightarrow[1-(z+2)]+\frac{a}{z+2}}=1+(z+2)+(z+2)^{2}
\end{aligned}
$$

$$
+\frac{a}{2+2} \text { Parion }
$$

$$
\begin{aligned}
& \frac{1}{2-2^{3}}=\frac{1}{2}+\frac{-1 / 2}{1+2}+\frac{1 / 2}{1-2} \\
& =\frac{1}{-1+(z+1)}+\frac{-\frac{1}{2}}{z+1}+\frac{y_{2}}{2-(z+1)} \\
& =\frac{11}{-1+(z+1)}+\frac{\frac{1}{2}}{z+1}+\frac{\frac{1}{2}}{2\left(1-\frac{z+1}{2}\right)} \\
& =\frac{1}{(z+1)\left(1-\frac{1}{z+1}\right)}+\frac{1 / 2}{z+1}+\frac{1}{4}\left(1-\frac{z+1}{2}\right)_{-1}^{-1} \\
& \frac{1}{(z+1)}\left[1-\frac{1}{z+1}\right]^{-1}-\frac{1}{2(z+1)}+\frac{1}{4}\left[1-\frac{z+1}{2}\right]^{-1} \\
& =\frac{1}{(z+1)}\left\{1-\frac{1}{z+1}+\left(\frac{1}{z+1}\right)^{2}\right] d-\frac{1}{2(z+1)}-\frac{1}{} \text { papoped pat } \\
& \frac{1}{4}\left\{1+\left(\frac{z+1}{2}\right)+\left(\frac{z+1}{\alpha}\right)^{2}+\cdots\right\}
\end{aligned}
$$

3 Find the Laurent Revues $4, \frac{1}{z^{3}-z^{4}}$ about $\begin{gathered}\text { zoo }\end{gathered}$
-1

$$
\begin{aligned}
f(z)=\frac{1}{z^{3}(1-z)}= & \frac{1}{z^{3}}(1-z)^{-1} \\
= & \frac{1}{z^{3}}\left\{1+z+z^{2} \ldots\right\} \\
= & \frac{1}{z^{3}}+\frac{1}{z^{2}}+\frac{1}{z}+1+z+\cdots \\
& \text { principal part- }
\end{aligned}
$$

4 Find Laurent serves if $z^{2} e^{1 / z}$ abow $z=0$.

$$
\begin{aligned}
& \rightarrow z^{2} e^{y / z}=z^{2}\left[1+\frac{1}{1!z}+\frac{1}{2!z^{2}}+\frac{1}{3!z^{3}}+\cdots\right) \\
&=z^{2}+\frac{z}{1!}+\frac{1}{2!}+\frac{1}{3!z^{+}}+\cdots \\
& \text { Expand } \quad f(z)=\frac{z^{2}-1}{z^{2} 5 z+6} \quad \text { in } 2<|z|<3 \text { ard a }
\end{aligned}
$$ Laurent Serves

$$
\begin{aligned}
& \frac{z-1}{z^{2}-5 z+6}=\frac{z-1}{(z-2)(z-3)} \\
&=\frac{A}{z-2}+\frac{B}{z-3}=\frac{A(z-3)+B(z-2)}{(z-2)(z-3)} \\
& z-1=A(z-3)+B(z-2) \\
& A=2 \quad 1=-A \quad A=-1 \\
& z=3 \quad 2=B \quad B=2 . \quad 2<|z|<3 \\
& \frac{z-1}{z^{2}-5 z+6}=-\frac{1}{z-2}+\frac{2}{z-3} \quad 2<|z| \Rightarrow 2 \\
& \left.=\frac{1}{z\left(1-\frac{2}{z}\right)}+\frac{2}{-3\left[1-\frac{z}{3}\right]} \quad \right\rvert\, z 3 \Rightarrow 1 \\
&=-\frac{1}{z}\left(1-\frac{2}{z}\right)^{-1}-\frac{2}{3}\left(1-\frac{z}{3}\right)^{-1}
\end{aligned}
$$

$$
-\frac{1}{z}\left(1+\frac{2}{2}+\left(\frac{2}{2}\right)^{2}+\cdots\right]-\frac{2}{3}\left[1+\frac{z}{3}+\left(\frac{2}{3}\right)^{2}+\cdots\right)
$$

6 Find Laurent series of $f(z)=\frac{-2 z+3}{z^{2}-3 z+2}$ with Centre 0 in
(1) $|z|<1$
(2) $|<|z|<2$

$$
\begin{aligned}
\rightarrow f(z)= & \frac{-2 z+3}{z^{2}-3 z+2}=\frac{-2 z+3}{(z-1)(z-2)}=\frac{A}{(z-1)}+\frac{B}{z-2} \\
& -2 z+3=A(z-2)+B(z-1) \Rightarrow A=-1 \quad B=-1 \\
f(z) & =\frac{-1}{z-1}+\frac{-1}{z-2 .} .
\end{aligned}
$$

(1) $|z|<1 \quad\left|\frac{z}{2}\right|<1$.

$$
\begin{aligned}
=\frac{-1}{-1+z}-\frac{1}{-2+z} & =\frac{1}{1-z}+\frac{1}{2(1-z / z)} \\
= & (1-z)^{-1}+\frac{1}{2}(1-z / 2)^{-1} \\
= & 1+z+z^{2} z_{1}+\frac{1}{2}\left[1+\frac{z}{2}+\left(\frac{z}{2}\right)^{2}+\cdots\right] \\
& =\frac{1+z+z^{2}+\cdots+\frac{z}{4}+\frac{z^{2}}{8}+\cdots}{}
\end{aligned}
$$

(2). $1<|z|<2 \Rightarrow 1<|z| \Rightarrow \frac{1}{|2|}<1$

$$
\begin{aligned}
&|z| \alpha 2 \Rightarrow\left|\frac{z}{2}\right|<1 \\
& f(z)=-\frac{1}{z-1}-\frac{1}{z-2} \\
&=\frac{-1}{z(1-1 / z)} \frac{1}{-2+z}=\frac{-1}{z}(1-1 / z]^{-1}+\frac{1}{2(1-z / z)} \\
&=\frac{-1}{z}(1-1 / z)^{-1}+\frac{1}{2}(1-z / z)^{-1} \\
&=-\frac{1}{2}\left(1+1 / z+(y)^{2} \cdots\right]+\frac{1}{2}\left[1+\frac{z}{2}+\left(\frac{z}{2}\right)^{2}+\cdots\right. \\
&=-\frac{1}{z}-1 / z^{2}-\frac{1}{z^{3}} \cdots+\frac{1}{2}\left[1+z / 2+(z / 2)^{2} \cdots\right.
\end{aligned}
$$

7 Expond $f(z) \frac{z^{2} 1}{z^{2}-52+6}$ in $a<|z|<3$
\longrightarrow

$$
\begin{aligned}
& f(z)=\frac{z^{2}-1}{z^{2} 5 z+6}=1+\frac{5 z-7}{z^{2}-5 z+6} \\
& z ^ { 2 } 5 z + 6 \longdiv { z ^ { 2 } + 0 z - 1 } \\
& \frac{z^{2}-52+6}{5 z-7} \\
& \frac{5 z-7}{z^{2}-5 z+6}=\frac{5 z-7}{(z-2)(z-3)}=\frac{A}{z-2}+\frac{B}{z-3}-\frac{A(z-3)+B(z-2)}{(z-2)(z-3)} \\
& 5 z-7=A(z-3) 7 B(z-2) \\
& \text { z= } 2 \quad 3=\cdots \text { A } \\
& A=-3 \\
& 2=3 \quad 8=B \\
& B=8 \\
& \frac{5 z-7}{(z-2)(z-3)}=\frac{-3}{z-2}+\frac{8}{23} \\
& 2<|x|<3 \quad 2<|z| \quad \frac{2}{121}<1 \\
& |z|<3 \quad\left|\frac{z}{5}\right|<1 \\
& \frac{5 z-7}{(z-2)(z-3)}=\frac{-3}{z\left(1-\frac{2}{2}\right)}+\frac{8}{-3\left(1-\frac{2}{3}\right)} \\
& =\frac{-3}{2}\left[1-\frac{2}{2}\right]^{-1}-\frac{8}{3}\left(1-\frac{2}{3}\right)^{-1} \\
& =\frac{-3}{2}\left[1+\frac{2}{2}+\left(\frac{2}{2}\right)^{2}\right]-\frac{8}{3}\left[1+\frac{2}{3}+\left(\frac{2}{3}\right)^{2}+\cdots\right] \\
& \left.=\frac{-3}{2}-\frac{6}{2^{2}} \quad-\frac{8}{3} 11+\frac{2}{3}+\left(\frac{2}{3}\right)^{2}+\cdots\right] \\
& f(z)=1+-\frac{3}{z}-\frac{6}{z^{2}} \cdots-\frac{8}{3}\left[1+z+\left(\frac{z}{3}\right]^{2}+\cdots\right]
\end{aligned}
$$

Zeros and Singutaritos of a Punctron $f(x)$
The poents at whech a finction $f(z)$ takes the value 10 bolled zeros fof(z) In otherwords, a zero is a ' z ' otwhech $f(x)=0$
eg: (0) f(z) $=(2,1)^{p}$
at $\left.z=1 \Rightarrow f_{1}(z)+1\right)^{2}-0 \quad x y z_{2} 1$ of o zenes
of $f(x)=(z-1)^{2}$
(11) $f(z)=z^{2}-1 \Rightarrow f\left(0=1^{2}, 0\right.$

$$
f(1)=(1-1)^{2}=0
$$

$z=1$ and $z=-1$ axe the zeros of fox) zend
(ii1) $f(z)$ sinz

$$
\sin 2=0 \quad \infty \quad z=n \pi \quad, n=0,11, \pm 2
$$

There are ingumie number if 2000 ,
(Iv) $f(x)=e^{2}$ hare no bumble zero:.

A fanction $f(z)$ b Binguler or hors a Singutaxity at a pount $z=z$, to $P(z)$ wo rot analytic at $z=$ a but every nerghborhoot $q \quad z=z_{0}$ cortams ponts at avhich -fezo is cunatytic wo al30 soyg Thod $z=z_{0}$ so a singular pount q f(z).

Types of singular poinls

1) Isolatad Ingular pounts a Singula foum $z=z_{0}$ of a fermetwon $f(z)$ is callod an
esolated Singular pown, if therre ozist a covele with cenise ko whele contare no other Banguase poents of fiz).

Gg: (1) $\quad f(z)=\frac{z}{z+1}=\frac{z}{(z+1)(z+1)}$
$\because=1,-1$ an toulatid singulastar

$$
\cdot f(z)=\frac{1}{\sin \pi_{z}}
$$

? $20 \rightarrow 7 z=0$
172动机

$$
Z= \pm n
$$

(2) Pbles
 keme the the strogulasticy s an we called apde \& Pamsipat past funtesens
a pole of Oades m.
The fole of ifrast ondes 10° atro trown an Sumple pole:
if 2×20 is a pole of fig) then

$$
\left|f_{12}\right| \mid \rightarrow \infty \text { are } z \rightarrow 2 o
$$

(3) Essential singularty

4 - He permapial past if A(2) comomis ungontely nowng terms then $z z$ o wolled aon esseoteal Sirgulauty.
Ey $e^{y=}$ hove an ersenteal burgulandy at $z=0$.
4) Removable Singulauty

A function $f(g)$ hars a renovvable Smogulauty at $z=z_{0}$. if $f\left(z, w^{\circ}\right.$ no omaleyter at $z=z_{0}$, but can be made anolytie there by arsignery a surzabic value $f\left(z_{0}\right)$ Eg $\frac{8 i n z}{z}$ hovo a removable singularty af $z=0$.

Psoblems
Qthenment Sirgulaxiles
$f(y)=$ borne bear monfunci- no q wetcited smzedavier.
a) $\quad 4(x)=\frac{1}{(z-3)^{2}(z+5)}$

$$
(2-3)^{2}(2+5)=0
$$

$z=3$ pole of oeder 2
$z=-5$ pole q oader 1 .
$3 e^{42}$

$$
\begin{aligned}
-\rho(z) & =e^{4 z} \\
& =1+\frac{1}{2}+\frac{1}{z^{9} 2!}+\cdots
\end{aligned}
$$

essented singulaty at $z=0$.

2 deleqmine zesos.
51° and -5, ase deros q order 1.
$2 \quad f(z)=\sin 2 \tan 2$

$$
\begin{array}{r}
f(z)=0 \quad \Rightarrow z \tan z=0 \\
z=0 \mathrm{~g} \quad z=n \hat{1}
\end{array}
$$

$$
\begin{aligned}
& f^{\prime}(z)=z \sec ^{2} z+\operatorname{com} z \\
& f^{\prime}(0)=0 \\
& f^{\prime \prime}(z)=2=\sec ^{2} z \tan z+2 \sec ^{2} z \\
& f^{\prime \prime}(0)=2 \neq 0 .
\end{aligned}
$$

$$
f(n \pi)=0
$$

$$
\overbrace{}^{\prime}(n n) 10
$$

$z=n \pi$ of frestorder $z=0$ if second oxdet.

$$
\begin{aligned}
& z Q^{2}+25 \quad z^{2}+25=0 \quad \Rightarrow \quad z^{2}=-25 \quad 2= \pm 51^{\circ} \\
& f(5,0)=0 \quad f^{\prime}(z)=2 z \quad f^{\prime}(5,0)=10^{\prime} \neq 0 \\
& f(-510)=0 \quad f^{\prime}(z)=2 z \quad \quad f^{\prime}(-510)=-10^{\circ} \neq 0
\end{aligned}
$$

$$
\begin{aligned}
& f_{f} x=\tan 2
\end{aligned}
$$

Residues
Expand $f(a)$ ar laurent Sens and Residue $s^{\prime} b_{1}, u^{\circ}$ the coestient $q \frac{1}{3}$ 交o Formula for Residues
(1) If $f(z)$ wo q the form $\frac{p(z)}{q(z)}$ thess Simple pole at 20 Residue is

$$
\operatorname{Res}_{z=z_{0}} f(z)=\frac{p\left(z_{0}\right)}{q\left(z_{0}\right) .}
$$

(2) $\begin{aligned} & \text { Res } f(z)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z) \\ & z-z_{0}\end{aligned}$
(2) pole of order m

$$
\begin{aligned}
& \text { y order } m \\
& \text { Res } f(z) \\
& z=z_{0}
\end{aligned} \lim _{(m-1)!} \frac{\frac{1}{(m-1)}}{} \frac{d^{m-1}}{d z^{m-1}}\left[z-z_{0}^{m} f(z)\right]
$$

Residue theorem
Let. $f(z)$ be analytic inside a Simple closed putto C and en C. except for finitely many Smgular points $z_{1}, z_{2} \ldots z_{k}$ inside c. Then the integral of $f(z)$ taken Counter clocturise around c equecals bani times the sum of the gestures of $f\left(z z ?\right.$ or $\ldots, \ldots z_{E}$

$$
q_{f} f(x) d x \quad a n \|^{v} \quad z^{k} \quad \text { kes } f_{1}(z)
$$

\therefore ant [Sum qu Residus)

Dims
1 Integrate $f(x) \frac{1}{2} 2^{4}$ choctrwise moned the cincle c $151=12$

$$
R_{1}=\operatorname{Res}(f(x), z=0) \quad \int_{d^{1}} \operatorname{lan}_{3} \frac{d^{2}}{d^{2}}, z^{3} \quad \delta^{3}(1, a)
$$

[Gign wodenhe laker in (horkroras dixerlions)
a Fend all singulantios and conmpanding xesendust 1) $\frac{\sin 82}{20}$

Ans. $f(x)=\frac{\operatorname{sinax}}{26}$ lues $z=0$ pote q onder as

$$
\begin{aligned}
& \oint_{2} \quad \begin{array}{c}
1 \\
z_{3}
\end{array} \\
& \text { Hewe za wh ar pele y, asder } 3 \\
& \text { 2. } 1 \text { ai prole 4, adol } 1
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Res}(f(z), z=0) & =\frac{1}{(6-0)!z \rightarrow 0} \lim _{z^{5}} \frac{d^{5}}{z^{6}} \cdot \frac{\sin 2 z}{2^{6}} \\
& =\frac{1}{5!} \frac{d^{5}}{d z^{6}} \sin 2 z \\
& =\frac{1}{5 \times 4 \times 3 \times 2} 32 \cos 2 z=\frac{4}{15}
\end{aligned}
$$

(2)

$$
\frac{z+2}{(z-2)(z+1)^{2}}
$$

$z=2$ pole of order 1
$z=-1$ pole of order 2

$$
\left.R_{1}=\text { Res } f f(z), z=2\right)=\lim _{z \rightarrow 2}(z-2) \frac{z+2}{(z-2)(z+1)^{2}}=4 / 9
$$

$$
\begin{aligned}
\operatorname{Ra}: \operatorname{Res}(f(z), z=-1)= & \frac{1}{1!} \lim _{d \rightarrow-1} \frac{d}{d}(a+1)^{2} \frac{z+2}{(z-2)(z+1)^{2}} \\
& =\lim _{3 \rightarrow-1} \frac{d}{d z} \frac{z+2}{z-2} \\
& =\lim _{3 \rightarrow-1}\left\{\frac{(3-2)-(3+2)}{(3-2)^{2}}=\frac{-4}{9}\right.
\end{aligned}
$$

(3)

$$
\begin{aligned}
& f(z)=\frac{e^{2}}{z^{2}+4} \\
& z^{2}+4=0 \quad z= \pm 21^{0}
\end{aligned}
$$

$z=21^{\circ}-21^{\circ}$ are simple poles

$$
R_{1}=\operatorname{Res}\left(h(z), z=Q_{1}\right) \quad=\lim _{a \rightarrow Q^{i}}(3-21) \frac{e^{z}}{(z+2 i)(z-21)}
$$

$$
R_{2}=\operatorname{Re}(f(A), z=-2 i) \quad \lim _{2 \rightarrow-20^{\circ}} \sum^{4 \cdot 0}\left(8+2^{\circ}, e^{2}(z+2)(2+8)\right.
$$

$$
z^{2}-45-5 \quad(2-5)(2+1)
$$

$2,5,-1$ are Simple poles

$$
C \cdot\left|z-2-1^{\circ}\right|=3 \cdot Q .
$$

$$
z=5 \quad|5-2-10| \quad|2, \%|=\sqrt{41}=10<3 Q \text { wosidec }
$$

$$
z=5 \quad|5-2-1| \quad\left|-1-2-1^{0}\right| \quad\left|-3-1^{0}\right|=\sqrt{9+1} \text {, 10 } \text { wnetde }
$$

$$
R_{1}=\operatorname{Reg}(f(3), N+5) \quad \lim _{2 \rightarrow 5}(2-5) \frac{2 \cdot 23}{(2,5)(2+1)}
$$

$$
\lim _{d \rightarrow 5} \frac{z-23}{2+1}=-3
$$

$$
\begin{aligned}
R_{2}=\operatorname{Res}(P(2), 3-1) & =\lim _{3 \rightarrow-1}(2+1) \frac{z-23}{(2-5)(2+1)} \\
& =\lim _{3 \rightarrow-1} \frac{2-23}{2 \rightarrow}=\frac{4}{2-3}
\end{aligned}
$$

Ry Resedue thm

$$
\begin{aligned}
& \text { esidue thm } \\
& \phi_{c} \frac{z-23}{z^{2}-4 x-5} d z=2 \pi 1^{\circ}[\text { sirn } q \text { is siduos }] \\
& \hline 2 \pi 1^{\circ}[-3+4]=2 \pi 1^{\circ}
\end{aligned}
$$

(4) Use Cauchy Residue thm to evaluali $\phi \frac{z d z}{c(\alpha-1)(z-x)^{2}}$ Where cis° the circle $|z-2|=1 / 2$
Ans
Hew $z=1$ pole y order 1

$$
f(z)=\frac{z}{(z-1 x-z)^{2}} \quad \text { Hew } z=1 \text { pole } y \text { orod } \quad \begin{array}{r}
z \\
2
\end{array}
$$

C. $|z+2|-y_{2} \quad z=1 \quad|1-2|-1>y_{2}$ oudside C

$$
\begin{array}{llll}
z=1 & 12.21 & -0 . y_{2}
\end{array} \quad \text { 1.331de c }
$$

$$
\frac{=-1}{\phi} d^{\frac{-1}{z}} \quad 2 \pi ?^{\circ}(\text { scm } y \text { sentios) }
$$

\therefore By Residue thom $\frac{1}{(2-1)(x-2)^{2}} d x$ 2nt $x+1$

$$
\ldots 2 n 0^{\circ} /
$$

$$
\begin{aligned}
& \left.R_{1}=\operatorname{Reg}(f(a), 3=2) \quad \lim _{3 \rightarrow a} \frac{d}{a} a \cdot a\right)^{A}(2-1)(2,2)^{2}
\end{aligned}
$$

(5)

Evaluale
$\int_{c(z-1)^{2}(z} \frac{\sin z}{}$
where $C 0^{\circ}$ the akel.

$$
12-3 \cdot 1 \cdot-1
$$

Ans

$$
f(z)=\frac{\sin z}{(z-1)^{2}\left(z^{2}, 9\right)}=\frac{\sin z}{(z-1)^{2}\left(z+31^{\circ}\right)\left(z-31^{0}\right)}
$$

Here $\quad z=1$ pole of order 2
$z=30^{\circ}$ pole of onder 1
$z=-31^{\circ}$ pole of order 1
C: $|z-310|=1$
$z=1 \quad|1-319|=\sqrt{12+(-3)^{2}} \quad \sqrt{10}>1 \quad$ ousside C
$z=31^{\circ} \quad\left|30^{0}-3,0\right|=0<1 \quad$ unside C.
$z=-30^{\circ}\left|-30^{\circ}-30^{\circ}\right|=\left|-G 0^{\circ}\right|>1$ outside C.

$$
\begin{aligned}
& R_{1}=\operatorname{Res}\left(f(z), z=31^{\circ}\right)=\lim _{3-31^{\circ}}\left(z-31^{\circ}\right)-f(z) \\
& =\lim _{z \rightarrow 31^{\circ}}\left(z-31^{\circ}\right) \cdot \sin z \\
& (2-1)^{2}\left(3+31^{\circ}\right)\left(2+31^{\circ}\right) \\
& =\operatorname{lingble}^{\sin 31^{\circ}} \frac{\sin }{\left(3 i^{\circ}-1\right)^{2} \cdot 61^{\circ}}=\frac{x^{\circ} \sinh 3}{\left[-9-61^{\circ}+1\right] \cdot 60^{\circ}} \\
& =\operatorname{cosinh} 3 \\
& =(8-6 i 0)^{\circ} \operatorname{gnh}_{3}\left(-8-6 i^{2}\right) 6 . \\
& (8-6 i)\left(-8-61^{\circ}\right) 6 \\
& \left(8-60^{\circ}\right)^{8} \text { inh }_{3} \\
& \text { (36-64)6 } \\
& =\frac{(4-310) \operatorname{smbh} 3}{-300} \\
& =\frac{-\left(4-31^{\circ}\right) \operatorname{sinn}_{3}}{300} \\
& \oint_{C} \frac{\operatorname{Sin} z}{(z-1)^{2}\left(z^{2}+a\right)}=\frac{2 \pi 1^{\circ} x-\left(4-31^{\circ}\right)}{300} \text { smbs } \\
& =\frac{\pi(-3-410) \operatorname{smb} 3}{150}
\end{aligned}
$$

6 Evaluate $\int_{C} \frac{z-1}{(z+1)^{2}(z+2)}$ Where $c w^{\circ}$ the Circle $|z+0|-2$
Ans

$$
f(z)=\frac{z-1}{(z+1)^{2}(z-z)}
$$

$Z=1$ pole 8 order 2
$z=2$ pole of order I

$$
\begin{aligned}
& C:\left|z+c^{0}\right|=2 \\
& z=-1 \quad\left|-1+c^{0}\right|=\sqrt{2}<2 \text { aside } c \\
& z=2 \quad\left|2+1^{0}\right|=\sqrt{5}>2 \text { ont side } c \\
& R_{1}=\operatorname{Res}(f(3), 3=-1) \quad-\frac{1}{1} \lim _{z \rightarrow-1} \frac{d}{d z}(z+1)^{2}-f(2) \\
& \\
& =\lim _{3 \rightarrow-1} \frac{d}{d z}(2+1)^{2} \cdot \frac{3-1}{(3-2)(3+1)^{2}} \\
& \\
& =\lim _{3 \rightarrow-1} \frac{(2-2)-(3-1)}{(3-2)^{2}}=-1 / 9
\end{aligned}
$$

By residue thor

$$
\begin{aligned}
& \phi_{C} \frac{z-1}{(z+1)^{2}(z-2)} d z=2 \pi i^{\circ} x-1 / 9=\frac{-2 \pi 1^{\circ}}{9} \\
& \int_{C} \frac{\cos \pi z^{2}+\sin ^{2} \pi z^{2}}{(z+1)^{2}(z+2)} d z \quad \text { where } c{ }^{\circ}|z|=3
\end{aligned}
$$

Ans
7
Evaluate $\int_{C} \frac{\cos \pi z^{2}+\sin \pi z^{2}}{(z+1)^{2}(z+2)} d z$ where $c w^{\circ}|z|=3$

$$
f(z)=\frac{\operatorname{cosin}^{2}+\sin ^{2} z^{2}}{(z+1)^{2}(z+2)}
$$

Z. 1 pole of order 2
$z=-2$ pole of order I
c. $|z|=3$
$2=-1 \quad|-1|<3$ inside C
$z=2 \quad 1-21<3 \quad$ inside C.

$$
\begin{aligned}
& R_{1}=\operatorname{Res}(f(z), z=-1)=\frac{1}{1!} \lim _{z \rightarrow-1}(z+1)^{2} \cdot \frac{\cos \pi f^{2}+\sin n}{(z+1)^{2}(z+z)} \text { (8) } \\
& =\lim _{\dot{\alpha} \rightarrow+}\left\{(z+2)\left\{-\sin \pi z^{2} \times 2 \sin +\cos \pi z^{2} \times 2 z \pi\right\}-\left\{\cos \pi z^{2}+\sin \pi z\right\}\right. \\
& (2+2)^{2} \\
& =\frac{(-1+2)\{[-\sin \pi x-2 \pi+\cos \pi x-2 \pi\}-\{\cos \pi+\sin \pi\}}{\left.(-1+2)^{2}\right)} \\
& =\frac{\text { Q }{ }_{9}+\frac{2}{2}}{2 \pi+1} \\
& R_{z}=\operatorname{Res}(f(z), z=-2)=\lim _{z \rightarrow-2}(z+2) \frac{\cos \pi z^{2}+\sin \pi z^{2}}{(z+1)^{2}(z+2)} \\
& =\frac{\cos 4 \pi+\cos 4 \pi}{(-2+1)^{2}}=1 \\
& \oint_{c} \frac{\cos \pi z^{2}+\sin \pi z^{2}}{(z+1)^{2}(z+2)}=2 \pi i^{\circ}\{2 \pi+1+1\}=4 \pi i^{\circ}(\pi+1)
\end{aligned}
$$

Residue integration of real integrals integral of the type $\int_{0}^{2 \pi} f(\cos \theta, \sin \theta) d a$ Put $e^{e \omega}=z$ then $\quad \cos \theta=\frac{z+\bar{z}}{2}=\frac{z+\frac{1}{z}}{2}$ $\operatorname{Sinco}=\frac{z-\bar{z}}{2 i}=\frac{1}{2,0}\left[z-\frac{1}{2}\right]$

$$
d \theta=\frac{d z}{i^{\circ} z}
$$

Prtegaral become $\int_{C}^{1} f(z) \frac{d z}{e^{2} z}$
Pom
Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{a+b \operatorname{cose} \theta} \quad a>b>0$ using contour integration.
A. Let $z=e^{e \theta} \quad|z|=1$
$\cos \theta \quad \frac{1}{2}\left(z+\frac{1}{2}\right) \quad d \theta \quad \frac{d z}{i z}$

$$
\begin{aligned}
& a+b \cos \theta=a+\frac{b}{2}\left(z+\frac{1}{2}\right) \quad a+\frac{b}{2}\left(x^{2}+1\right) \\
& =\frac{2 a z+b z^{2}+b}{2 z} \\
& \int_{0}^{2 \pi} \frac{d a}{a+b \cos \theta}=\int_{c}^{\frac{d z}{2 z}} \frac{2 a+b z^{2}+b}{2 z} \\
& \frac{a}{c} \int_{c} \frac{d z}{a a z+b z^{2}+b} \\
& =\frac{2}{10} \int_{C} f(z) d z \\
& f(z)=\frac{1}{b z^{2}+a a z+b} \\
& b z^{2}+2 a z+b=0 \quad \Rightarrow \quad 2=\frac{-2 a \pm \sqrt{4 a^{2}-4 b^{2}}}{2 b} \\
& z=\frac{-a \pm \sqrt{a^{2}-b^{2}}}{b} \\
& f(z)=\frac{1}{b\left[2-\left[\frac{-a+\sqrt{a^{2} b^{2}}}{b}\right]\right.}\left[z-\left[\frac{\left.-a-\sqrt{a^{2} b^{2}}\right]}{b}\right]\right. \\
& Z=\frac{-a+\sqrt{a^{2}-b^{2}}}{b}, \frac{-a-\sqrt{a^{2} b^{2}}}{b} \text { are simple poles } \\
& C:|2|=1 \quad\left|\begin{array}{c}
-a+\sqrt{a^{2}-b^{2}} \\
b
\end{array}\right|:\left|\frac{-a}{b}+\sqrt{a}-1\right|<1 \text { condec } \\
& \text { since } a / b>1 \\
& \left|\frac{-a-\sqrt{a^{2}-b^{2}}}{b}\right| \because\left|-\frac{a}{b}-\sqrt{a^{2}-1}\right|>1 \text { aulside } C \\
& R_{1}=\operatorname{Res}\left(f(\xi), \frac{\left.3-a+\sqrt{a^{2}-b^{2}}\right]}{b}=\operatorname{lom}_{a^{2}}\left[\frac{a+\sqrt{a^{2}+b^{2}}}{b} \frac{(3-(\sqrt{a+b})}{b}\right) \times\right. \\
& \left.=\frac{1}{b\left[\frac{-a+\sqrt{a^{2}-b^{2}}}{b}-\left[\frac{-a \sqrt{a^{2} b^{2}}}{b}\right]=\frac{1}{b \times 2 \sqrt{a^{2} b^{2}}} b=\begin{array}{c}
\frac{1}{b}
\end{array} \frac{1}{\left.b+\sqrt{a^{2} b^{2}}\right]}\right.} \begin{array}{c}
a \\
2 \sqrt{2} \sqrt{a}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
\int f(z) d z & =2 \pi i^{\circ} n_{1} \\
= & 2 \pi 1^{\circ} \times \frac{1}{2 \sqrt{a^{2}-b^{2}}}=\frac{\pi 1^{\circ}}{\sqrt{a^{2}-b^{2}}} \\
\int_{0}^{a n} \frac{d \theta}{a+b \cos 6} & =\frac{a}{c^{0}} \int f(x) d z \\
& =\frac{a}{c} \times \frac{\pi 1^{\circ}}{\sqrt{a^{2} b^{2}}}=\frac{2 \pi}{\sqrt{a^{2}-b^{2}}}
\end{aligned}
$$

2 Evaluale $\begin{array}{r}\text { integraken }\end{array}$

$$
\begin{aligned}
& Z=e^{100} \quad d o=\frac{d z}{i_{z}} \quad \cos \theta=\frac{1}{d}(z+1 / z) \\
& 2+\operatorname{cose} e=2+\frac{1}{2}(z+1 / z) \\
& =2+\frac{z^{2}+1}{2 z}=\frac{x^{2}+4 z+1}{2 z} \\
& \int_{0}^{8 n} \frac{d \theta}{2+\cos \theta}=\int_{=\frac{d z / 1 z}{z^{2}+a z+1}}^{2 z}=\frac{2}{2} \int \frac{d z}{x^{2}+z z+1} \\
& f(2)=\frac{1}{2^{2}+4 z+1}
\end{aligned}
$$

$z=-2 \pm \sqrt{3}$ are Singuiar pts y oxdeel

$$
\begin{array}{ll}
f(z) \quad & {\left[\frac{1}{[-(-2+\sqrt{3}]][z-(2-\sqrt{3})]}\right.} \\
C:|z|=1 \quad|-2+\sqrt{3}|<1 \text { unside } \\
& |-2-\sqrt{3}|>1 \text { oulside } \\
R_{1} \quad= & R e) \quad(f(2), \bar{a}=-2+\sqrt{3})=\lim _{2 \rightarrow-2+\sqrt{3}}[2-(-2+\sqrt{3})]
\end{array}
$$

By Residue thor

$$
\begin{aligned}
& \quad f f(z) d z \quad 2 \pi r^{\circ} \times \frac{1}{2 \sqrt{3}}=\frac{\pi 1^{\circ}}{\sqrt{3}} \\
& B y(1) \quad \int_{0}^{2 \pi} d \theta=\frac{2}{2} \times \frac{\pi 1^{0}}{\sqrt{3}}=\frac{2 \pi}{\sqrt{3}}
\end{aligned}
$$

(3) Show that $\int_{0}^{2 \pi} \frac{\cos a c \theta}{5+4 \cos \theta} d o=\pi / 6$
$\operatorname{In} \quad Z=e^{i 0} \quad \left\lvert\, z 1=1 \quad d o=\frac{d z}{i z}\right.$

$$
\begin{aligned}
& \cos 0=\frac{1}{2}(z+1 / z)=\frac{z^{2}+1}{2 z} \quad \cos 20=\frac{1}{2}\left(z^{2}+z^{2}\right) \\
& =\frac{1}{2} \frac{z^{4}+2}{x^{2}} \\
& \begin{aligned}
& \cos \theta \theta \theta=\frac{\frac{1\left(z^{4}+1\right)}{z^{4}}}{5+4 \cos \theta} \\
& \frac{5+4 \times \frac{\left(z^{2}+1\right)}{2 z}}{2 z}=\frac{\frac{z^{4}+1}{2 z^{2}}}{\frac{5 z+2 z^{2}+z}{z}}=\frac{z^{4}+1}{2 z\left[2 z^{2}+5 z+2\right]} \frac{d z}{c^{2} z} \\
& \int_{0}^{2 \pi} \frac{\cos 2 \theta}{5+4 \cos \theta} d \theta=\frac{z^{4}+1}{2 z\left(2 z^{2}+5 z+2\right)} d z \\
&=\frac{1}{2 c^{0}} \int_{c} \frac{z^{4}+1}{z^{2}\left(2 z^{2}+5 z+z\right)}
\end{aligned} \\
& =\frac{1}{2 i} \int_{c} f(z) d z
\end{aligned}
$$

$$
\begin{aligned}
P(z) & =\frac{1}{z^{2}\left(2 z^{2}+5 z+2\right)} \\
& =\frac{1}{2 z^{2}\left(z^{2}+\frac{5}{2} z+1\right)}
\end{aligned}
$$

$2=0$ pole q order 2

$$
z^{2}+5 / 2 z+1=0 \Rightarrow z=-2-2
$$

$Z=-y_{2}$ pole q order
$Z=-2$ pole o order 1
$c:|z|=1 \Rightarrow z=0, z=-\frac{1}{2}$ lues inside c and $z=-2$ andsuec

$$
\begin{aligned}
& R_{1}=\operatorname{Res}(f(8), z=0) \\
& =\frac{1}{1!} \lim _{2 \rightarrow 0} \frac{d}{d z} z^{2} \frac{2^{2}+1}{2 \frac{2}{2}\left(3^{2}+5 / 2(1)\right.} \\
& =\lim _{2 \rightarrow 0} \frac{\left(2^{2}+\frac{5}{2}+1\right) 42^{3}-\left(3^{3}+1\right)(2 a+5 / 2)}{(254 / 2+1)^{2}}=-5 / 4 \\
& R_{2}=\operatorname{Res}\left(f(g), z=-y_{z}\right) \\
& =\lim _{\alpha \rightarrow-y_{2}}\left(\alpha+y_{2}\right) \frac{z^{2}+1}{2 a^{2}\left(z^{2}+y_{2}\right)\left(a^{2}+2\right)}=\frac{17}{12}
\end{aligned}
$$

By Resedui -rom

$$
\begin{aligned}
\ell f(z) d z & =2 \pi i^{\circ} \times \text { duro } q \text { residues } \\
& =2 \pi 1^{\circ}\left[-\frac{5}{4}+\frac{17}{12}\right)=\frac{\pi 1^{\circ}}{3} \\
\int_{0}^{2 \pi} \frac{\cos 2 \theta}{5+4 \cos \theta} d \theta & =\frac{1}{2 i} \int f(z) d z \\
& =\frac{1}{2 i^{\circ}} \cdot \frac{\pi i^{0}}{3}=\pi / b
\end{aligned}
$$

Integral of the type $\int_{-\infty}^{\infty} f(x) d x$

$$
\begin{aligned}
& \int_{-\infty}^{\infty} f(x) d x=\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x \\
& \int_{C} f(x) d z=\int_{-\pi}^{R} f(x) d x+\int_{-}^{R} f(z) d z \\
& \begin{array}{l}
2 \pi^{0} \sum \operatorname{Res} f(\vec{x})=\int_{-R}^{R} f(x) d x+\iint_{S}^{R}(z) d z \\
\int_{-R}^{R} f(x) d x=2 \pi^{0} \sum \operatorname{Res} f(z)-\int_{S}^{T} \rho(x) d z
\end{array} \\
& \lim _{R \rightarrow \infty}^{-R} \int_{-\infty}^{\infty} f(x) d x \quad 2 n_{i}^{i} \Sigma R e s f(x)
\end{aligned}
$$

16 poles are on real axis

Poms
Evaluate $\int_{0}^{\infty} \frac{d x}{x^{2}+1}$
A: Consider $\int f(z) d z=\int_{c} \frac{d z}{z^{2}+1}$
Where C is the caper semicircle $|z|=R$

$$
\begin{aligned}
& \text { Where } C \text { is the } \int_{C} f(z) d z=\int_{-\infty}^{R} f(x) d x+\int_{C_{1}} f(z) d z \\
& f(z)=\frac{1}{z^{2}+1} \quad z^{2}+1=0 \Rightarrow z= \pm 1^{\circ} \text { are simple poles. } \\
& z=1^{\circ} \text { inside } C \\
& z=-1^{\circ} \text { outside } C \\
& R_{1}=\operatorname{Res}\left(f(z), z=1^{\circ}\right)=\lim _{z \rightarrow 1^{\circ}}\left(z-1^{\circ}\right) \frac{1}{\left(z+1^{\circ}\right)\left(z-1^{\circ}\right)=\frac{1}{210}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.R_{1}=\operatorname{Res}\left(f(z), z=1^{\circ}\right)=z \rightarrow 1^{\circ} \quad\left(z+1^{\circ}\right)(z-1)=\int_{-\infty}^{\infty} f(f(x))^{\circ}\right) 2 \pi i^{\circ}(\text { sum } q \text { resideres } \\
& 0 \int_{0}^{(1)} f(z) d z=
\end{aligned}
$$

$$
\int_{c} f(z) d z=2 \pi i^{0} \times \frac{1}{2,0}=\pi
$$

$0 \Rightarrow C^{C} \pi=\int_{-R}^{R} f(x) d x+\int_{C_{1}} f(z) d z$ $R \rightarrow \infty \quad \int_{-\infty}^{\infty} f(x) d x=\pi$

$$
\lim _{R \rightarrow \infty} \int_{c_{1}} f(z) d z=0
$$

$$
2 \int_{0}^{\infty} \frac{1}{x^{2}+1} d x=\pi
$$

$f(x)=\frac{1}{x^{2}+1}$ oven)

$$
\int_{-\infty}^{\infty} \frac{1}{x^{2}+1} d x=\pi / 2
$$

$$
\begin{aligned}
& \int_{-\infty}^{\infty} f(x) d x: 2 \pi i^{0} \sum \operatorname{Re} f(z)+\pi i^{0} \sum \operatorname{Res} f(z) \\
& \text { Tesiduer cones } \\
& \text { pooling pis in } \\
& \text { cariosponding } \\
& \text { to real axis } \\
& \text { upper half plane }
\end{aligned}
$$

2 Evaluate
Ans

$$
\begin{aligned}
& \int_{C} f(z) d z=\int_{C} \frac{z^{2}}{\left(z^{2}+9\right)\left(z^{2}+4\right)} d z \\
& \int_{C}^{R} f(z) d z=\int_{-\infty}^{R} f(x) d x+\int_{C_{1}} f(z) d z \\
& \int_{C} f(z) d z=\int_{-\infty}^{\infty}-f(x) d x \\
& f(z)=\frac{z^{2}}{\left(z^{2}+9\right)\left(z^{2}+4\right)}
\end{aligned}
$$

$z= \pm 31^{\circ}, \pm 2 i^{\circ}$ are simple poles

$$
\begin{aligned}
& R_{1}=\operatorname{Res}\left(f(z), z=31^{\circ}\right)=\lim _{z \rightarrow 31^{\circ}}\left(z-31^{\circ}\right) \frac{z^{2}}{(2+31)(\xi-31)\left(z^{2}+4\right)} \\
& =\frac{-9}{6 i \times-5}=\frac{3}{1010} \\
& R_{2}=\operatorname{Res}\left(f(z), z=2 i^{\circ}\right),=\lim _{z \rightarrow 2 i}(z-2 i) \frac{z^{2}}{\left(z^{2}+a\right)(z+2 i)(z+2 i)} \\
& =\frac{-4}{5 \times 4 i}=-\frac{1}{510} \\
& \int_{c} f(z) d z=2 \pi 1^{\circ} \text { (Sumo residues) } \\
& =2 \pi^{\circ}\left(\frac{3}{100^{\circ}}-\frac{1}{50}\right)=\frac{2 \pi 0^{\circ}}{100^{\circ}}[3-2]=\frac{\pi}{5} \\
& \int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+9\right)\left(x^{2}+4\right)} d x=\frac{\pi}{5}
\end{aligned}
$$

(3) $\int_{0}^{\infty} \frac{d x}{x^{a}+4}$ using contour integration

Ans

$$
\begin{aligned}
& \int_{c} f(z) d z=\int_{c} \frac{d z}{z^{2}+4} \\
& \quad \mid f(z) d z=\int_{-}^{R} f(x) d x+\int_{-} f(z) d z
\end{aligned}
$$

$$
\lim _{R \rightarrow \infty} \int_{-\infty}^{\infty} f(x) d x \quad \int_{c} f(x) d x \cdots(1)
$$

$$
f(\text { R })=\frac{1}{z^{2}+4}
$$

$z^{2}+a=0 \quad z= \pm 21^{\circ} \quad$ are simple poles
$z=21^{\circ}$ inside $\quad z=-2 i$ out side C.

$$
\begin{aligned}
& R_{1}=\operatorname{Res}\left(f(z), z^{2}=21\right)=\lim _{z \rightarrow 2 i}(z-2 i) \frac{1}{(z+21)(z-2 i)}=\frac{1}{4 i} 0 \\
& \int_{c} f(z x) z=2 \pi i^{\circ}(\operatorname{sem} q \text { residue })=2 \pi i \times 1 / 4 \cdot=\pi / 2 \\
& \int_{-\infty}^{\infty} f(x) d x=\pi / 2 \\
& 2 \int_{0}^{\infty} f(x) d x=\pi / 2
\end{aligned}
$$

[^0]: We now explain a general method for finding the complete integral of a non-linear partial differential equation which is due to Charpit.

 Consider the equation

 $$
 \begin{equation*}
 f(x, y z, p, q)=0 \tag{1}
 \end{equation*}
 $$

 Since z depends on x and y, we have

 $$
 \begin{equation*}
 d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y=p d x+q d y \tag{2}
 \end{equation*}
 $$

 Now if we can find another relation involving x, y, z, p, q such as $\phi(x, y, z, p, q)=0$
 then we can solve (1) and (3) for p and q and substitute in (2). This will give the solution provided (2) is integrable.

 To determine ϕ, we differentiate (1) and (3) with respect to x and y giving

 $$
 \begin{align*}
 & \frac{\partial f}{\partial x}+\frac{\partial f}{\partial z} p+\frac{\partial f}{\partial p} \frac{\partial p}{\partial x}+\frac{\partial f}{\partial q} \frac{\partial q}{\partial x}=0 \tag{4}\\
 & \frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial z} p+\frac{\partial \phi}{\partial p} \frac{\partial p}{\partial x}+\frac{\partial \phi}{\partial q} \frac{\partial q}{\partial x}=0 \tag{5}\\
 & \frac{\partial f}{\partial y}+\frac{\partial f}{\partial z} q+\frac{\partial f}{\partial p} \frac{\partial p}{\partial y}+\frac{\partial f}{\partial q} \frac{\partial q}{\partial y}=0 \tag{6}\\
 & \frac{\partial \phi}{\partial y}+\frac{\partial \phi}{\partial z} q+\frac{\partial \phi}{\partial p} \frac{\partial p}{\partial y}+\frac{\partial \phi}{\partial q} \frac{\partial q}{\partial y}=0 \tag{7}
 \end{align*}
 $$

